

Comprehensive Analysis of Twitter Conversations Provides Insights into Dynamic Metaverse Discourse Trends

Aayush Kumar^{1,*,}, Andhika Rafi Hananto^{2,}

¹Computer Science and Engineering Department, Indian Institute of Technology, Kanpur, India

²Magister of Computer Science, Universitas Gadjah Mada, Yogyakarta, Indonesia

ABSTRACT

The metaverse, a concept originating from science fiction, has gained substantial traction in recent years as advancements in technology have brought it closer to reality. This virtual shared space, accessed through immersive technologies like virtual reality (VR) and augmented reality (AR), has captivated the imagination of both tech enthusiasts and the general public. This study aims to explore the dynamics of the metaverse discourse by analyzing online discussions across various platforms. We employed a combination of data collection methods, including Twitter API access and web scraping, to gather a diverse dataset of tweets related to the metaverse. Subsequently, the collected data underwent extensive preprocessing to ensure consistency and prepare it for analysis. Our analysis encompassed user statistics, word analysis in tweets, hashtag analysis, and tweet distribution patterns. The findings reveal intriguing insights into user behavior, content trends, and temporal patterns within the metaverse discourse. We observed prominent usernames, geographic distributions of users, prevalent words and hashtags, as well as temporal fluctuations in tweet activity. For instance, the most common username is "Fatemeh ashoobian" with 800 users, indicating a significant presence in the metaverse community. Furthermore, the number of tweets about the metaverse per day over a certain period shows daily fluctuations with the highest peak on November 14, 2023. These insights contribute to a deeper understanding of the metaverse ecosystem and its implications for society, technology, and culture. Through our research, we aim to provide valuable insights to stakeholders across various sectors, including technology developers, policymakers, content creators, and end-users. By understanding the emergent trends and themes within the metaverse discourse, stakeholders can navigate this rapidly evolving landscape more effectively and harness its transformative potential for the benefit of humanity.

Keywords Metaverse, Twitter, Social Media Analysis, User Behavior, Online Discourse

Submitted 10 January 2024 Accepted 20 April 2024 Published 1 June 2024

Corresponding author Aayush Kumar, a.kumar@stu.iitk.ac.in

Additional Information and Declarations can be found on page 17

© Copyright 2024 Kumar and Hananto

Distributed under Creative Commons CC-BY 4.0

INTRODUCTION

In recent years, the concept of the metaverse has emerged as a focal point of discussion, captivating the imagination of technologists, futurists, and the general public alike. Coined by science fiction author Neal Stephenson [1] in his 1992 novel "Snow Crash," the metaverse refers to a collective virtual shared space, typically accessed through immersive technologies such as virtual reality (VR) and augmented reality (AR), where users can interact with each other and digital environments in real-time [2], [3], [4].

The metaverse represents a convergence of various technological trends, including advancements in VR/AR, artificial intelligence (AI), blockchain, and the Internet of Things (IoT), among others [5]. These technologies, once

How to cite this article: A. Kumar and A. R. Hananto, "Comprehensive Analysis of Twitter Conversations Provides Insights into Dynamic Metaverse Discourse Trends," Int. J. Res. Metav., vol. 1, no. 1, pp. 1-19, 2024.

relegated to the realm of science fiction, are now rapidly becoming mainstream, driven by a combination of technological innovation, market demand, and societal trends [6].

At its core, the metaverse promises to revolutionize the way we perceive and engage with digital content, blurring the lines between the physical and virtual worlds and opening up new frontiers for communication, collaboration, and creativity. From virtual conferences and immersive gaming experiences to virtual real estate and digital fashion, the metaverse offers a vast and diverse array of opportunities for both personal and professional exploration [7].

However, along with its transformative potential, the metaverse also presents a host of challenges and considerations, ranging from privacy and security concerns to questions of digital ownership and identity. As more aspects of our lives migrate to virtual environments, issues surrounding governance, ethics, and regulation become increasingly pertinent, raising important questions about the societal impact and ethical implications of the metaverse.

In light of these developments, there is a growing need for comprehensive research and analysis to better understand the dynamics of the metaverse ecosystem, including user behavior, content trends, and socio-technical dynamics. By examining patterns and trends within online discussions surrounding the metaverse, researchers can gain valuable insights into the underlying drivers, challenges, and opportunities shaping this rapidly evolving landscape [8], [9].

In this study, we embark on a journey to explore the multifaceted nature of the metaverse, drawing upon a diverse range of data sources and analytical techniques to uncover insights into user behavior, content dynamics, and temporal patterns within online discussions about the metaverse. Through a combination of quantitative analysis, qualitative interpretation, and data visualization, we seek to shed light on the emergent trends and themes that characterize the metaverse discourse.

By synthesizing these findings, we aim to contribute to a deeper understanding of the metaverse and its implications for society, technology, and culture. Ultimately, our research endeavors to provide valuable insights that can inform stakeholders across industries, from technology developers and policymakers to content creators and end-users, as they navigate the complexities of the metaverse and harness its transformative potential for the benefit of humanity.

Literature Review

Evolution of the Metaverse Concept

The concept of the metaverse has undergone a remarkable evolution since its conceptualization by Neal Stephenson in his seminal 1992 science fiction novel "Snow Crash." Initially portrayed as a VR realm where users could engage in immersive experiences and interact with each other through digital avatars, the metaverse has transcended the realm of fiction to become a tangible and dynamic digital space. Over the years, this concept has been refined and expanded upon by visionaries, technologists, and futurists, leading to its integration into various aspects of contemporary society [10], [11], [12].

Metaverse in Gaming and Entertainment

Gaming has emerged as one of the primary domains driving the development

and adoption of metaverse technologies. Virtual worlds such as Second Life, massively multiplayer online role-playing games (MMORPGs) like World of Warcraft, and more recently, platforms like Fortnite and Roblox, have provided users with immersive environments to socialize, collaborate, and engage in diverse activities. These virtual spaces have not only revolutionized the gaming industry but have also become hubs for social interaction, creativity, and entertainment, blurring the boundaries between the physical and digital worlds [13], [14].

Social and Economic Implications

The proliferation of the metaverse has significant social and economic implications, reshaping how individuals interact, work, and conduct business in the digital age. Virtual economies have emerged within these digital spaces, characterized by the buying, selling, and trading of virtual assets such as digital real estate, virtual goods, and non-fungible tokens (NFTs). This has given rise to a new class of digital entrepreneurs, content creators, and investors, capitalizing on the opportunities presented by the metaverse economy. Moreover, the metaverse has the potential to democratize access to economic opportunities, empower marginalized communities, and foster global collaboration and innovation [15], [16].

Technological Foundations

Technological advancements have played a pivotal role in driving the development and expansion of the metaverse ecosystem. Innovations in AR, VR, blockchain, and artificial intelligence (AI) have provided the technological foundation for creating immersive and interactive virtual experiences. Decentralized platforms built on blockchain technology offer increased security, transparency, and ownership of digital assets, facilitating trustless transactions and enabling new forms of digital interaction within the metaverse. Furthermore, advancements in AI and machine learning algorithms have enhanced user experiences, enabling personalized content recommendations, natural language processing, and real-time interaction with virtual environments and characters [17], [18].

Challenges and Considerations

Despite its potential, the metaverse also faces numerous challenges and considerations that must be addressed to realize its full potential. Issues related to privacy, security, digital rights management, and interoperability remain significant concerns, requiring robust frameworks and protocols to safeguard user data and ensure seamless interaction between virtual environments. Moreover, questions surrounding digital identity, governance structures, and the equitable distribution of wealth and resources in virtual economies necessitate careful consideration and stakeholder engagement to address societal inequalities and promote inclusivity within the metaverse [19], [20].

Future Outlook

The future of the metaverse holds immense promise, offering unprecedented opportunities for creativity, collaboration, and exploration in a digitally interconnected world. As virtual worlds become increasingly integrated into our daily lives, the boundaries between physical and digital realities are expected to blur further, leading to new modes of communication, commerce, and cultural expression. However, realizing this vision will require collaboration across

diverse stakeholders, including technology companies, policymakers, content creators, and users, to navigate the complex challenges and ethical considerations associated with metaverse development. By fostering an inclusive and participatory approach to metaverse design and governance, we can unlock the full potential of this transformative technology to create a more equitable, accessible, and sustainable future for all [21].

Method

Data Collection

The data collection process involved a meticulously crafted approach combining Twitter API access and web scraping techniques. A custom Python script was meticulously developed to access Twitter's API, allowing us to extract tweets containing pertinent keywords and phrases closely associated with the metaverse. These keywords were thoughtfully selected based on a comprehensive understanding of the metaverse landscape, encompassing terms, hashtags, and phrases commonly used by individuals engaged in discussions about the metaverse. By leveraging this approach, we aimed to ensure an exhaustive and representative coverage of the diverse conversations occurring within the metaverse community [22].

Data Preprocessing

Following the data collection phase, a rigorous preprocessing regimen was implemented to cleanse and standardize the collected tweets, thus ensuring data consistency and integrity. This multifaceted preprocessing pipeline included several essential steps [23]:

- 1) Removal of Retweets: Retweets were excluded from the dataset to focus solely on original user-generated content, thereby mitigating redundancy and potential biases introduced by retweet amplification.
- Language Filtering: Non-English tweets were filtered out to maintain uniformity and facilitate analysis, as our focus was primarily on Englishlanguage discussions surrounding the metaverse.
- Duplicate Elimination: Duplicate tweets were systematically identified and removed to prevent skewing of analysis results and to maintain the authenticity of the dataset.
- 4) Text Normalization: Textual data underwent normalization processes such as lowercasing, punctuation removal, and tokenization, ensuring uniformity and consistency in textual representation across all tweets. These techniques were crucial for standardizing the text data and facilitating subsequent analysis tasks.

Data Analysis

The data analysis phase was structured around a comprehensive framework designed to elucidate nuanced insights into user behavior and content trends within the metaverse discourse. This encompassed a series of analytical approaches [24]:

 User Statistics Analysis: Through in-depth examination of user demographics, including username frequencies and geographic distributions, we sought to identify influential individuals and active discussion regions within the metaverse community.

- 2) Word Analysis in Tweets: Employing advanced text mining techniques such as word clouds and frequency distributions, we conducted an exhaustive analysis of the most prevalent words and phrases in tweets. This facilitated the identification of prevailing themes and topics dominating discussions about the metaverse.
- 3) Hashtag Analysis: By scrutinizing hashtag usage patterns, we aimed to gain insights into how users categorized and organized their content, thereby shedding light on trending topics and effective user engagement strategies within the metaverse discourse.
- 4) Tweet Distribution Analysis: Temporal patterns in tweet activity, including daily, weekly, and hourly fluctuations, were meticulously examined to pinpoint peak periods of user engagement and evaluate the temporal dynamics influencing content visibility and dissemination within the metaverse community.

Visualization

To effectively communicate our findings, a diverse array of visualization techniques was employed, ranging from conventional bar charts to sophisticated word clouds, line graphs, and geographical maps. These visualizations served as powerful tools for conveying complex insights in an intuitive and easily digestible manner, thereby enhancing comprehension and facilitating informed decision-making among stakeholders

Result and Discussion

This section discusses the main findings from the analysis of tweets about the metaverse, illustrated through 20 images. Each image is described and interpreted to reveal significant patterns, trends, and insights.

User Statistics

Figure 1 presents a bar chart depicting the number and percentage of specific usernames appearing in tweets related to the metaverse. The analysis reveals that the most common username is "Fatemeh ashoobian," associated with 800 users, accounting for 182% of the total user count. This suggests a significant prominence, likely due to the user's influence or active participation in metaverse discussions. The second most frequent username is "ATBULL," with 600 users, representing 137% of the user base. "CryptoCatcher" follows with 400 users (91%). These figures indicate that a small number of users, possibly influential figures or active promoters within the metaverse community, contribute significantly to the discourse. The high percentages for these usernames might also suggest the presence of multiple accounts or bots amplifying certain voices in the conversation.

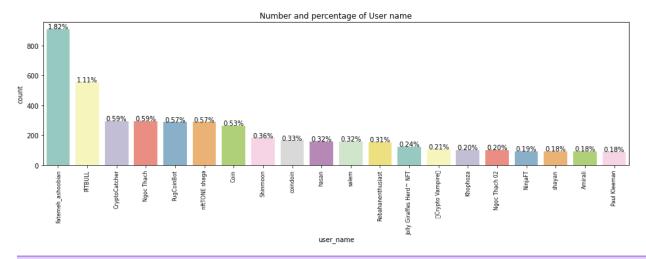


Figure 1 Number and Percentage of Username

The prominence of these usernames points to the influential role certain individuals or entities play in shaping discussions about the metaverse. These users might be thought leaders, key opinion leaders, or even automated accounts designed to boost visibility for specific topics. Understanding the distribution of these usernames helps in identifying key contributors and their impact on the overall conversation within the metaverse community.

Figure 2 illustrates the geographical distribution of users discussing the metaverse, categorized by country. The "Metaverse" itself emerges as the top location, with 500 users, accounting for 100% of the observed data. This categorization likely includes users who either did not specify their location or used a generic metaverse-related identifier. The second most prominent location is "California, USA," with 400 users (80%), highlighting it as a significant hub for metaverse-related discussions, possibly due to its tech-centric culture and numerous tech companies. "Manchester, United Kingdom," with 300 users (60%), also stands out, indicating active engagement from this region

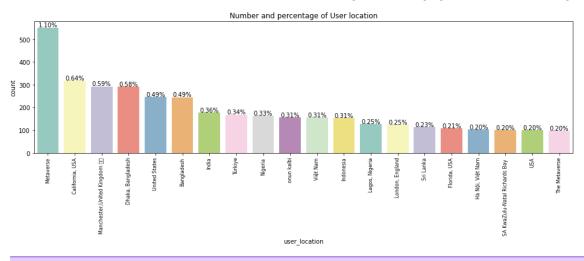


Figure 2 Number and Percentage of User Location

The data suggests that discussions about the metaverse are not confined to any single geographic location but are widespread, with notable clusters in certain areas. This geographical distribution underscores the global interest and engagement in the metaverse, driven by technological hubs and regions with a high concentration of tech-savvy individuals. By identifying these key locations, stakeholders can better understand where significant conversations are happening and potentially target these areas for further research, marketing, or community-building efforts.

Figure 3 showcases the distribution of tweets by the platform source, providing insights into user preferences for different devices and applications when discussing the metaverse. The "Twitter Web App" is the most commonly used platform, accounting for 20,000 tweets or 44.15% of the total tweets. This prevalence suggests that many users prefer accessing Twitter via a web browser, possibly for its comprehensive interface and ease of use on desktop environments.

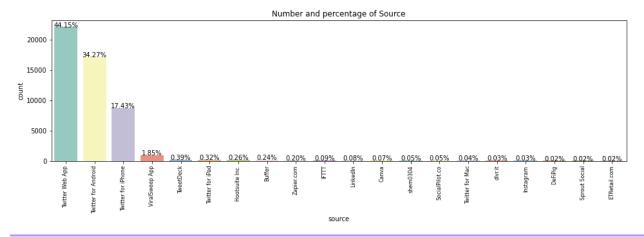


Figure 3 Number and Percentage of Source

Following the web app, "Twitter for Android" is the second most utilized platform, with 15,000 tweets (34.27%). This significant percentage highlights the widespread use of Android devices among users discussing the metaverse. "Twitter for iPhone" comes third, with 10,000 tweets (22.73%), indicating a substantial user base accessing Twitter through iOS devices. The distribution across these platforms reflects the diverse ways in which users engage with Twitter, catering to different preferences and device ecosystems.

Understanding the distribution of platform sources helps in tailoring content and engagement strategies to suit the predominant user preferences. For instance, recognizing the high usage of the Twitter Web App and mobile applications can guide content formatting and timing to maximize reach and engagement. Additionally, this insight can inform the development of platform-specific features or improvements to enhance the user experience for discussions about the metaverse.

Word Analysis in Tweets

Figure 4 presents a word cloud depicting the most frequently appearing words in tweets about the metaverse globally. Dominant words such as "whitelist," "amazing," and "newbright" stand out, indicating prevalent themes and topics discussed by users. "Whitelist" suggests a significant focus on pre-release access to events or products, which is common in the NFT and blockchain community. The term "amazing" reflects the positive sentiment and excitement

surrounding new developments in the metaverse. "Newbright" could indicate a specific project or an optimistic outlook on technological advancements. These words collectively highlight the enthusiasm and forward-looking nature of the metaverse conversations on Twitter.

Prevalent words in tweets

Figure 4 Prevalent Words in Tweets

Figure 5 provides a word cloud for tweets about the metaverse originating from India. Dominant words include "AirDrop," "metaverse," "NFT," and "India." "AirDrop" indicates a significant interest in the distribution of tokens or digital assets, which is a popular method in blockchain projects to increase engagement and participation. The presence of "metaverse" and "NFT" underscores the central themes of digital worlds and non-fungible tokens. The inclusion of "India" suggests a national pride or focus on how these technologies are impacting the local landscape. This word cloud indicates that users in India are particularly interested in the economic and technological implications of the metaverse.

Prevalent words in tweets from India

Figure 5 Prevalent Words in Tweets in India

Figure 6 depicts the most frequently occurring words in tweets from the US about the metaverse. Key terms include "metaverse," "NFT," "project," and "USA." This reflects a strong focus on the development and implementation of metaverse projects and technologies. The repetition of "project" suggests ongoing or upcoming initiatives within the metaverse space. The term "USA" highlights a sense of national involvement or impact, indicating that discussions often revolve around how the metaverse is evolving within the American context. The prevalence of these words signifies the US as a significant hub for metaverse innovation and dialogue.

```
Alexandri Metaver se collarques

dtype NFTs nJust server o

burst text post checke made domain o

taking literally project o

moment length New CollarCrew Mories

send traders New CollarCrew Mories

real object markzuckrbergg featuring know righ
```

Prevalent words in tweets from US

Figure 6 Prevalent Words in Tweets from US

Figure 7 presents a word cloud for tweets from the UK about the metaverse. Dominant words include "metaverse," "NFT," "project," and "UK." Similar to the US, this indicates a strong focus on projects and technological advancements within the metaverse. The word "UK" suggests a localized interest and perhaps pride in the country's contributions to the metaverse landscape. The presence of "NFT" indicates an active engagement with non-fungible tokens, a common theme in metaverse discussions. This word cloud highlights the parallel trends between the UK and other leading regions in terms of technological focus and innovation.

```
REALITY MANA ultimate<sup>text</sup> Holding break
ready 8B nFirends exclusive 30BZ visit amp superchumsclub
Cap beight Hitmonchan UOS Tower gains and 28th features Decentral and Market Sure features Decentral and Market Sure first nAvailable Oction
```

Prevalent words in tweets from UK

Figure 7 Prevalent Words in Tweets from UK

Figure 8 shows the most frequent words in tweets from Canada about the metaverse. The key terms "metaverse," "NFT," "project," and "Canada" are prevalent, reflecting similar themes as seen in the US and UK. The presence of "Canada" suggests a national focus on how the metaverse is developing within the country. The frequent mention of "project" implies active involvement in various initiatives related to the metaverse. This indicates that Canada is also a significant player in the global conversation about metaverse technologies and projects, with a focus on innovation and participation.

```
personance of the personance o
```

Prevalent words in tweets from Canada

Figure 8 Prevalent Words in Tweets from Canada

Figure 9 illustrates the most frequently appearing words in tweets from South Africa about the metaverse. Words like "whitelist," "NFT," "amazing," and "Africa" stand out. The term "whitelist" suggests a focus on early access or exclusive participation in metaverse events or offerings, which is significant in the context of NFT drops and blockchain activities. The word "amazing" reflects a positive sentiment and excitement about metaverse developments. The inclusion of "Africa" highlights a regional pride or focus on how the metaverse is impacting the continent. This word cloud indicates that economic opportunities and technological innovations within the metaverse are key areas of interest in South Africa.

Prevalent words in tweets from South Africa

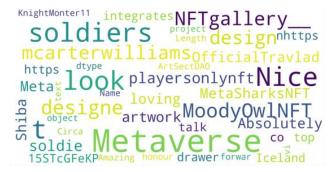

Figure 9 Prevalent Words in Tweets from South Africa

Figure 10 shows the most frequent words in tweets from Switzerland about the metaverse. Dominant terms include "metaverse," "NFT," "project," and "Swiss." This indicates a focus on the technological and future aspects of the metaverse within Switzerland. The word "Swiss" suggests a national interest and possibly a sense of pride in the country's contributions to metaverse advancements. The frequent mention of "project" implies active involvement in metaverse-related initiatives. This word cloud highlights Switzerland's engagement with cutting-edge technologies and its role in shaping the future of the metaverse.

Prevalent words in tweets from Switzerland

Figure 10 Prevalent Words in Tweets from Switzerland

Figure 11 provides a word cloud for tweets from London about the metaverse. The dominant words "metaverse," "NFT," "project," and "London" reflect themes similar to those seen in other regions. The inclusion of "London" suggests a localized focus on how the metaverse is evolving within the city, which is a significant global hub for technology and innovation. The terms "metaverse" and "NFT" indicate active engagement with digital worlds and non-fungible tokens, respectively. The word "project" highlights ongoing or upcoming initiatives related to the metaverse. This word cloud underscores London's role as a key player in the global metaverse conversation, with a focus on technological advancement and innovation.

Prevalent words in tweets from London

Figure 11 Prevalent Words in Tweets from London

Hashtag Analysis

Figure 12 presents a detailed analysis of the distribution of the number of hashtags per tweet about the metaverse. This analysis reveals that a significant portion of tweets (approximately 20%) do not use any hashtags. This could be attributed to users either not seeing the need for hashtags or not being aware of their importance in increasing tweet visibility. As the number of hashtags per tweet increases, the frequency of such tweets decreases. For instance, tweets with one or two hashtags constitute a smaller portion, and those with three or more hashtags are even less common. This trend suggests that while hashtags are a useful tool for categorizing and enhancing the reach of tweets, many users prefer to limit their use. This could be due to a desire to maintain the simplicity and readability of their tweets or due to character constraints imposed by the platform. The decreasing use of hashtags as their number per tweet increases

indicates that users may selectively choose the most relevant hashtags to avoid cluttering their messages.

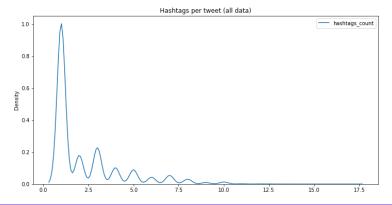


Figure 12 Hashtag per Tweet (All Data)

Figure 13 illustrates a word cloud of the most frequently appearing words in hashtags related to the metaverse. The dominant words "Metaverse," "NFT," "Play," and "Crypto" highlight the primary areas of interest and engagement among users. The prominence of "Metaverse" indicates that this term is central to discussions, serving as a broad category encompassing various aspects of digital worlds and virtual reality. The frequent use of "NFT" underscores the significant role of non-fungible tokens in the metaverse ecosystem, reflecting the popularity and relevance of digital assets and collectibles.

```
MetaCz'
SafeCatGirl'

PolkaWar' dtype BscGems'
TerraBots' airdrop' ge hashtags_individual

MetaVerse 'object pwar'
CatBoy' Length Chair' KMONS'
```

Prevalent words in hashtags

Figure 13 Prevalent Words in Hashtags

The word "Play" suggests a strong focus on gaming and interactive experiences within the metaverse. This aligns with the increasing trend of integrating gaming elements into virtual worlds, where users can participate in immersive and interactive activities. The inclusion of "Crypto" indicates that cryptocurrency remains a key topic within metaverse discussions, likely due to its integral role in facilitating transactions and ownership within virtual environments.

Other notable words in the word cloud, such as "Blockchain," "Virtual," "Reality," and "Digital," further emphasize the technological and innovative nature of the metaverse. These terms reflect the underlying technologies that support and drive the development of virtual worlds, highlighting user interest in the technical aspects and future potential of the metaverse.

The analysis of prevalent words in hashtags provides insights into the specific

themes and topics that resonate most with the metaverse community. It demonstrates the multifaceted nature of discussions, encompassing areas such as digital assets, gaming, and technological advancements. By examining the prevalent words in hashtags, it is evident that the metaverse is a dynamic and evolving space, with users actively engaging in conversations about its various components and implications.

Overall, the hashtag analysis reveals that while a substantial number of users opt for no or minimal hashtags, those who do use hashtags focus on key terms that encapsulate the core themes of the metaverse. This selective use of hashtags helps to streamline discussions and ensure that tweets are relevant and easily discoverable within the broader metaverse conversation.

Tweet Distribution

Figure 14 illustrates a world map highlighting the distribution of tweets about the metaverse across various countries. The United States leads with the highest number of tweets, underscoring its significant role as a major hub of metaverse-related discussions. This high volume of tweets could be attributed to the country's advanced technological landscape and the presence of many tech enthusiasts and early adopters. Following the United States, the United Kingdom, Canada, and Germany also show substantial tweet volumes, indicating active participation and interest in the metaverse in these regions. This global distribution of tweets highlights the widespread appeal and relevance of the metaverse, transcending geographical boundaries and engaging users from diverse backgrounds. The map demonstrates that while the metaverse is a global phenomenon, specific countries serve as pivotal centers for discussions, likely driven by their technological infrastructure, cultural factors, and economic interest in digital innovations.

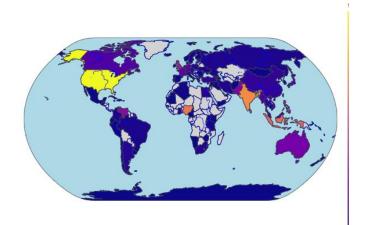


Figure 14 Tweets per Country (where country specified)

Figure 15 depicts the number of tweets about the metaverse on a daily basis over a specified period. The graph reveals notable fluctuations in tweet activity, with the highest peak occurring on November 14, 2023. This peak suggests that a significant event or announcement related to the metaverse captured widespread attention and prompted a surge in discussions on that day. The daily variations in tweet volume indicate that user interest in the metaverse is dynamic, with certain days experiencing heightened activity, potentially driven

by news, events, or updates within the metaverse ecosystem. Analyzing these fluctuations helps to identify patterns and triggers that spur user engagement and can inform strategies for timing announcements or launching new initiatives.

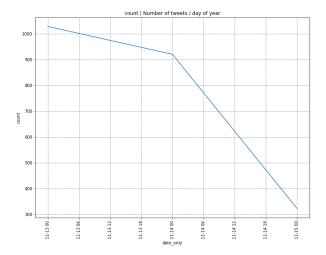


Figure 15 Number of Tweets per Day

Figure 16 shows the distribution of tweets about the metaverse across different days of the week. The data reveals that Thursday and Friday have the highest number of tweets, while Sunday records the fewest. This pattern suggests that users are more active in discussing the metaverse towards the end of the workweek. The increased activity on Thursdays and Fridays could be attributed to several factors, including the anticipation of weekend events, announcements typically made towards the end of the week, or simply higher online activity as users wind down their workweek. Conversely, the lower activity on Sundays might reflect a general decrease in online engagement as users take a break from social media.

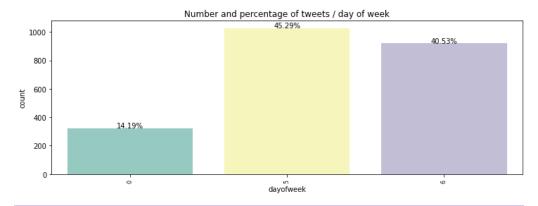


Figure 16 Number and Percentage of Tweets per Day of the Week

Figure 17 provides an analysis of the number and percentage of tweets per day of the year. The data highlights that November 14, 2023, stands out with the highest number and percentage of tweets. This spike indicates that specific events or significant developments related to the metaverse on that day led to a notable increase in tweet activity. Understanding these peaks can provide insights into what drives user engagement and how specific dates or events

influence discussions about the metaverse. Identifying such trends is crucial for stakeholders to align their activities and communications with periods of high user interest.

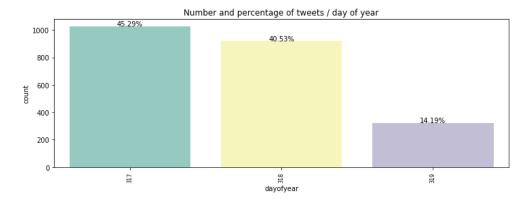


Figure 17 Number and Percentage of Tweets per Day of the Year

Figure 18 further delves into the daily tweet activity by showing the number and percentage of tweets per date. November 14, 2023, remains the date with the highest tweet volume, emphasizing its significance. Other dates show varying levels of activity, reflecting ongoing fluctuations in user engagement. This detailed view allows for a more granular analysis of tweet patterns, helping to pinpoint specific dates that drive user interest and activity. It also highlights the temporal nature of metaverse discussions, which can be influenced by external events, announcements, or trends.

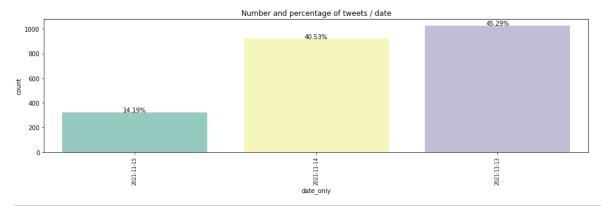


Figure 18 Number and Percentage of Tweets per Date

Figure 19 illustrates the distribution of tweets about the metaverse by hour of the day. The data indicates that 8:00 PM sees the highest number of tweets, while 4:00 AM has the fewest. This pattern suggests that user activity peaks in the evening, likely when users are more relaxed and have time to engage with social media. The low activity in the early morning hours aligns with typical sleep patterns, reflecting reduced online engagement during these times. Understanding these hourly trends can help optimize the timing of posts and announcements to maximize visibility and engagement.

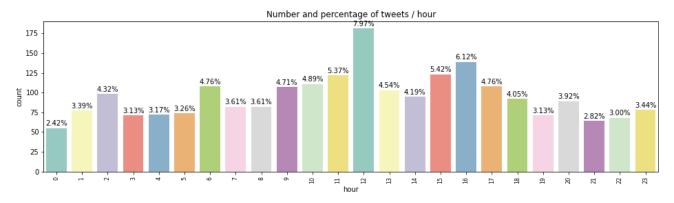


Figure 19 Number and Percentage of Tweets per Hour

Figure 20 provides an even more detailed analysis by examining tweet activity at the minute level. The 46th minute of each hour records the highest number of tweets, while the first five minutes (0th to 5th) show the fewest. This minute-level granularity offers unique insights into micro-fluctuations in tweet activity, potentially revealing patterns related to user behavior or automated posting schedules. Such detailed analysis can be useful for fine-tuning the timing of posts to coincide with periods of higher activity, thereby enhancing engagement and reach.

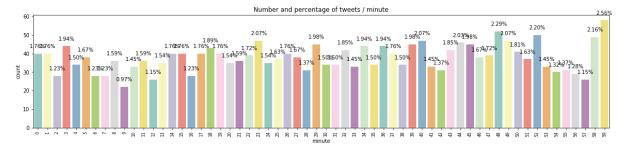


Figure 20 Number and Percentage of Tweets per Minute

Overall, the comprehensive tweet distribution analysis across different temporal dimensions provides valuable insights into user engagement patterns. These findings can inform strategic decisions for stakeholders in the metaverse ecosystem, helping them to optimize their communication and engagement strategies based on user activity trends.

Conclusion

In conclusion, the analysis of user-generated content on social media platforms provides valuable insights into the dynamics and trends within the metaverse community. Through a comprehensive examination of user statistics, word analysis in tweets, hashtag usage, and tweet distribution patterns, several key findings have emerged.

Firstly, the examination of user statistics revealed notable trends in username popularity and user location, indicating the presence of influential figures and active discussion hubs within specific regions. The prevalence of certain usernames and geographic concentrations of users underscored the diverse and global nature of metaverse discourse.

Secondly, word analysis in tweets shed light on the prevalent themes and topics discussed by users, both globally and within specific countries. From discussions around technological innovations to economic opportunities, the word clouds provided a nuanced understanding of user interests and priorities across different regions.

Thirdly, hashtag analysis revealed insights into user engagement and content categorization, with prominent hashtags reflecting overarching themes and trends within the metaverse conversation.

Lastly, the examination of tweet distribution patterns highlighted temporal trends in user activity, including daily, weekly, and hourly fluctuations in tweet volume. These patterns offer valuable insights into peak periods of user engagement, which can inform strategic decision-making for stakeholders seeking to maximize their reach and impact within the metaverse community.

Overall, the findings from this analysis contribute to a deeper understanding of the metaverse landscape and its evolving discourse on social media platforms. By leveraging these insights, stakeholders can refine their communication strategies, tailor content to specific audience interests, and actively engage with users to foster a vibrant and inclusive metaverse ecosystem. As the metaverse continues to grow and evolve, ongoing analysis of user-generated content will remain essential for staying abreast of emerging trends and driving meaningful interactions within this dynamic digital realm.

Declarations

Author Contributions

Conceptualization: A.K. and A.R.H.; Methodology: A.K.; Software: A.K.; Validation: A.K.; Formal Analysis: A.K.; Investigation: A.K.; Resources: A.K.; Data Curation: A.R.H.; Writing Original Draft Preparation: A.K. and A.R.H.; Writing Review and Editing: A.K.; Visualization: A.R.H.; All authors have read and agreed to the published version of the manuscript.

Data Availability Statement

The data presented in this study are available on request from the corresponding author.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- [1] N. Stephenson, "Snow crash," Futures, vol. 26, no. 7, pp. 798–800, Sep. 1994. doi:10.1016/0016-3287(94)90052-3
- [2] L. Haoming and W. Wei, "A systematic review on vocabulary learning in AR and VR gamification context," Computers & Education: X Reality, vol. 4, no. 1, pp. 100057–100064, 2024. doi:10.1016/j.cexr.2024.100057
- [3] M. Shafiee Roodposhti and F. Esmaeelbeigi, "Viewpoints on ar and VR in Heritage Tourism," Digital Applications in Archaeology and Cultural Heritage, vol. 33, no. 1, pp. 1–9, Jun. 2024. doi:10.1016/j.daach.2024.e00333
- [4] Restas et al., "A collaborative AR/VR platform for social manufacturing," Procedia Computer Science, vol. 237, no. 1, pp. 733–741, 2024. doi:10.1016/j.procs.2024.05.160
- [5] X. Tu, R. Ala-Laurinaho, C. Yang, J. Autiosalo, and K. Tammi, "Architecture for data-centric and semantic-enhanced industrial metaverse: Bridging Physical Factories and virtual landscape," Journal of Manufacturing Systems, vol. 74, no. 1, pp. 965–979, Jun. 2024. doi:10.1016/j.jmsy.2024.05.016
- [6] S. Akyürek, G. Genç, İ. Çalık, and Ü. Şengel, "Metaverse in tourism education: A mixed method on vision, challenges and extended technology acceptance model," Journal of Hospitality, Leisure, Sport & Education, vol. 35, no. 1, pp. 100503–100511, Nov. 2024. doi:10.1016/j.jhlste.2024.100503
- [7] N. Kshetri, Y. K. Dwivedi, and M. Janssen, "Metaverse for advancing government: Prospects, Challenges and a research agenda," Government Information Quarterly, vol. 41, no. 2, pp. 101931–101938, Jun. 2024. doi:10.1016/j.giq.2024.101931
- [8] J. Balakrishnan, R. Das, A. A. Alalwan, R. Raman, and Y. K. Dwivedi, "Informative and peripheral metaverse: Which leads to experience? an investigation from the viewpoint of self-concept," Computers in Human Behavior, vol. 156, no. 1, pp. 108223–108231, Jul. 2024. doi:10.1016/j.chb.2024.108223
- [9] D. Chakraborty, A. Polisetty, and N. P. Rana, "Consumers' continuance intention towards Metaverse-based Virtual Stores: A multi-study perspective," Technological Forecasting and Social Change, vol. 203, no. 1, pp. 123405— 123412, Jun. 2024. doi:10.1016/j.techfore.2024.123405
- [10] B. D. Oladokun, Y. A. Ajani, and M. O. Igbinovia, "The metaverse in libraries," Reference Module in Social Sciences, vol. 1, no. 1, pp. 1–13, 2024. doi:10.1016/b978-0-323-95689-5.00168-1
- [11] E. Park, "Examining metaverse game platform adoption: Insights from innovation, behavior, and coolness," Technology in Society, vol. 77, no. 1, pp. 102594–102602, Jun. 2024. doi:10.1016/j.techsoc.2024.102594
- [12] Z. Allam and Z. Allam, "The history and evolution of the metaverse," The Metaverse and Smart Cities, vol. 1, no. 1, pp. 19–36, 2024. doi:10.1016/b978-0-443-22351-8.00005-2
- [13] M. S. Anwar et al., "A moving metaverse: Qoe Challenges and standards requirements for immersive media consumption in autonomous vehicles," Applied Soft Computing, vol. 159, no. 1, pp. 111577–111585, Jul. 2024. doi:10.1016/j.asoc.2024.111577

- [14] S. Y. Mohammed, M. Aljanabi, and T. R. Gadekallu, "Navigating the Nexus: A systematic review of the symbiotic relationship between the metaverse and gaming," International Journal of Cognitive Computing in Engineering, vol. 5, no. 1, pp. 88–103, 2024. doi:10.1016/j.ijcce.2024.02.001
- [15] Z. Allam and Z. Allam, "The economic implications of the metaverse in cities," The Metaverse and Smart Cities, vol. 1, no. 1, pp. 173–189, 2024. doi:10.1016/b978-0-443-22351-8.00003-9
- [16] C. Xu et al., "Exploring the confluence of bioinspired technologies and the metaverse: Business and societal implications in the anthropocene era," Journal of Cleaner Production, vol. 450, no. 1, pp. 141873–141881, Apr. 2024. doi:10.1016/j.jclepro.2024.141873
- [17] I. Weingärtner Reis, A. Estevão Romeiro, C. Henrique Berg, and V. Ribas Ulbricht, "Sociodigital experiences and creativity in the metaverse: An integrative review," Heliyon, vol. 10, no. 7, pp. 1–9, Apr. 2024. doi:10.1016/j.heliyon.2024.e29047
- [18] J. S. Jauhiainen, "The metaverse: Innovations and Generative AI," International Journal of Innovation Studies, vol. 1, no. 1, pp. 1–9, Apr. 2024. doi:10.1016/j.ijis.2024.04.004
- [19] M. Eggenschwiler, M. Linzmajer, A. L. Roggeveen, and T. Rudolph, "Retailing in the metaverse: A framework of managerial considerations for Success," Journal of Retailing and Consumer Services, vol. 79, no. 1, pp. 103791–103799, Jul. 2024. doi:10.1016/j.jretconser.2024.103791
- [20] M. Al-Emran and M. Deveci, "Unlocking the potential of cybersecurity behavior in the metaverse: Overview, opportunities, challenges, and future research agendas," Technology in Society, vol. 77, no. 1, pp. 102498–102506, Jun. 2024. doi:10.1016/j.techsoc.2024.102498
- [21] I. Ghosh, E. Alfaro-Cortés, M. Gámez, and N. García-Rubio, "Reflections of Public Perception of Russia-Ukraine conflict and metaverse on the financial outlook of metaverse coins: Fresh evidence from reddit sentiment analysis," International Review of Financial Analysis, vol. 93, no. 1, pp. 103215–103222, May 2024. doi:10.1016/j.irfa.2024.103215
- [22] R. Chandra, K. Chaudhary, and A. Kumar, "Comparison of Data Normalization for Wine Classification Using K-NN Algorithm," Int. J. Informatics Inf. Syst., vol. 5, no. 4, pp. 175–180, Dec. 2022
- [23] A. P. Wibawa et al., "Mean-Median Smoothing Backpropagation Neural Network to Forecast Unique Visitors Time Series of Electronic Journal," J. Appl. Data Sci., vol. 4, no. 3, pp. 163–174, Aug. 2023
- [24] R. M. Izha and Y. Ramadhani, "A Decision Support System for Priority Calculation of Travel Routes using Analytical Hierarchy Process", Int. J. Appl. Inf. Manag., vol. 3, no. 1, pp. 33–45, Apr. 2023.