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ABSTRACT 

The study explores anomaly detection in blockchain transactions within the Open 

Metaverse, utilizing Isolation Forest and Autoencoder Neural Networks. With the rise 

of the Metaverse, blockchain technology has become essential for secure digital 

transactions. However, the decentralized nature of blockchain makes it vulnerable to 

various anomalies, potentially undermining trust and security in digital spaces. 

Isolation Forest, an unsupervised machine learning algorithm, isolates anomalies 

based on the assumption that anomalies are few and distinct from regular data points. 

Its effectiveness in handling high-dimensional data makes it suitable for real-time 

applications. On the other hand, Autoencoders, a type of neural network, excel in 

detecting anomalies through reconstruction error, identifying data points that deviate 

from normal patterns. The research applied these models to a simulated dataset from 

the Open Metaverse, including features like transaction amount, login frequency, and 

session duration, to capture nuanced user behaviors. Preprocessing steps, such as 

one-hot encoding for categorical features and standardization for numerical features, 

ensured data consistency for accurate modeling. The Isolation Forest achieved a 

precision of 0.85, while the Autoencoder slightly outperformed it with a precision of 

0.87. Both models demonstrated strong AUC-ROC values, with the Autoencoder 

scoring 0.85 compared to Isolation Forest’s 0.82, indicating robust performance in 

distinguishing normal from anomalous transactions. The findings underscore the 

potential of both models to enhance security in blockchain-based virtual 

environments, with the Autoencoder showing an edge in handling complex data 

patterns. However, the use of simulated data presents limitations, suggesting the 

need for further testing with real-world Metaverse transaction data. Future research 

could explore integrating other advanced algorithms, such as Graph Neural Networks, 

to improve anomaly detection in blockchain systems. 

Keywords Anomaly Detection, Blockchain Transactions, Isolation Forest, Autoencoder Neural 

Networks, Open Metaverse 

Introduction 

The concept of the Metaverse has transformed from a speculative science 

fiction concept into a vast digital ecosystem that bridges virtual and physical 

worlds. Defined as a network of interconnected virtual environments, the 

Metaverse allows users to engage in shared, immersive experiences through 

digital avatars. This space is characterized by its persistent, synchronous, and 

community-driven nature, which fosters extensive user-generated content and 

social interactions [1], [2]. Originally popularized by Neal Stephenson’s 1992 
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novel Snow Crash, the term "Metaverse" describes a virtual reality space where 

users can interact in a three-dimensional environment. Today, the Metaverse 

blends augmented reality (AR), virtual reality (VR), and the Internet of Things 

(IoT), facilitating a seamless fusion of digital and physical experiences. Recent 

advances in technology, such as high-precision recognition models and deep 

learning, have furthered the development of the Metaverse, enabling more 

dynamic and intelligent interactions [3], [4], [5]. 

Social media, gaming, and a growing demand for immersive experiences in 

fields like education and commerce have significantly impacted the evolution of 

the Metaverse. The COVID-19 pandemic, for instance, accelerated the adoption 

of virtual environments, highlighting the Metaverse's potential to reshape social 

interactions and educational frameworks [6], [7]. Moreover, blockchain 

technology and virtual currencies have introduced new economic models, 

facilitating the creation and exchange of digital assets within the Metaverse. 

Blockchain's decentralized nature supports the secure ownership and transfer 

of assets, thus opening new avenues for trade and interaction in the digital 

realm. As the Metaverse grows, it presents both opportunities for enhanced 

engagement and challenges regarding privacy, security, and ethical 

implications [4], [8], [9], [10]. 

The Open Metaverse initiative is central to the future of digital interactions, 

advocating for an accessible, interoperable, and user-empowered Metaverse. 

Unlike closed, proprietary platforms, the Open Metaverse emphasizes 

decentralization, allowing users to interact across various environments without 

being limited to a single ecosystem [8]. By fostering collaboration among 

developers, users, and organizations, the initiative seeks to create a Metaverse 

that is inclusive and supportive of diverse needs. One of its primary objectives 

is to enhance user experience by enabling seamless navigation across virtual 

spaces, where users can maintain their digital identities and assets across 

platforms. Blockchain technology plays a pivotal role in this regard, facilitating 

secure ownership and transfer of assets, which ultimately boosts user 

engagement and autonomy within the Metaverse [11]. Additionally, the initiative 

advocates for open standards and protocols to ensure effective communication 

across platforms, enhancing the overall user experience [12]. 

Addressing challenges around privacy, security, and ethical concerns, the Open 

Metaverse initiative emphasizes the importance of robust security measures to 

safeguard user data and enhance trust in virtual spaces [13]. As the Metaverse 

expands, these measures become increasingly vital in protecting users from 

potential threats. Furthermore, the initiative promotes discussions around the 

ethical dimensions of the Metaverse, including issues of inclusivity, 

representation, and the risk of social exclusion [11]. The Open Metaverse has 

the potential to transform sectors like education, tourism, and urban planning. 

In education, for instance, open Metaverse platforms enable collaborative and 

interactive learning environments [14], [15], while in tourism, users can virtually 

explore destinations, creating new avenues for engagement [16]. Urban 

planners can also leverage the Metaverse to simulate urban environments, 

facilitating better decision-making and community involvement [17]. Through 

interoperability and a commitment to user-centric design, the Open Metaverse 

initiative envisions a digital ecosystem that is inclusive, secure, and beneficial 

for all. 
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The role of blockchain technology in the Metaverse is foundational, providing a 

secure and transparent framework for managing transactions and digital assets 

within this digital ecosystem. Blockchain operates as a decentralized ledger that 

records transactions across a distributed network of computers, thus ensuring 

data integrity and reducing fraud risks. In the context of the Metaverse, where 

users frequently engage in activities such as purchasing virtual goods and real 

estate, blockchain's unique properties—such as immutability and 

transparency—are invaluable. These features enable secure asset 

management, empowering users to maintain control over their virtual 

belongings [18], [19]. As a result, blockchain technology establishes trust 

between users by offering a verifiable record of transactions, which is essential 

in an environment that relies heavily on digital interactions. 

Additionally, blockchain enhances transaction transparency using smart 

contracts—self-executing contracts with the terms of the agreement encoded 

into software. These contracts automate and verify transactions without 

intermediaries, reducing transaction costs and minimizing opportunities for 

disputes and fraud. For example, blockchain's applications in real estate, 

commonly referred to as "proptech," allow for the secure registration of property 

rights and automated contract execution, streamlining the entire transaction 

process [20], [21]. As digital assets continue to proliferate in the Metaverse, 

blockchain ensures the authenticity and security of these assets, fostering an 

environment of trust and reliability [22]. Its decentralized structure also allows 

users to bypass central authorities, reducing reliance on platforms that may 

impose restrictions or fees [23].  

Decentralization is a core principle of the Metaverse, significantly shaping its 

architecture and enabling a more equitable and user-centric digital environment. 

Rather than concentrating power within centralized authorities, decentralization 

distributes control across a network, giving users greater autonomy over their 

digital identities and assets. This shift is largely facilitated by blockchain 

technology, which supports numerous decentralized applications within the 

Metaverse [24], [25]. By empowering users to retain control over their assets 

and interactions, decentralization reduces dependency on centralized platforms 

that might impose restrictive terms of service or ownership rights. This 

enhanced autonomy bolsters user trust by mitigating risks associated with data 

breaches and unauthorized access, thus reinforcing the integrity of digital 

interactions within the Metaverse [25], [26]. 

Furthermore, decentralization promotes transparency and accountability by 

providing an immutable record of all transactions, making it nearly impossible 

to alter or falsify data. This transparency is crucial for establishing trust in digital 

exchanges, especially when users are engaging in transactions involving 

valuable assets, such as non-fungible tokens (NFTs). Blockchain enables users 

to verify the authenticity of NFTs, ensuring that ownership rights are securely 

documented on the blockchain [19], [27]. The decentralized structure of the 

Metaverse also enhances its resilience and efficiency, distributing 

computational resources across a network rather than relying on centralized 

servers. This design not only improves resource management but also ensures 

continuous functionality, even during localized failures or attacks. Collectively, 

decentralization and blockchain technology foster an innovative and sustainable 

Metaverse ecosystem that aligns with user empowerment and autonomy. 
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While blockchain technology is celebrated for its security features, such as 

immutability and transparency, it is not immune to fraud. In fact, the rise of 

blockchain-based platforms has been accompanied by an increase in fraudulent 

activities, especially in the cryptocurrency sector. For example, in the first half 

of 2017, over 30,000 users on the Ethereum platform fell victim to various forms 

of financial fraud, with total losses exceeding $225 million. A significant portion 

of these incidents stemmed from phishing scams, which accounted for more 

than half of the cases. This trend underscores the vulnerability of blockchain 

systems, particularly as regulatory frameworks are still evolving to address new 

challenges associated with decentralized platforms. 

Additionally, the sheer scale of blockchain networks further complicates the 

detection of fraud. By early 2017, the data size of the Ethereum blockchain 

alone had reached approximately 300GB, a figure that continues to grow as the 

technology matures [28]. The exponential increase in data makes traditional 

fraud detection methods inadequate, highlighting the need for advanced 

analytical approaches to identify anomalies [29] efficiently. 

The decentralized nature of blockchain systems also poses challenges for 

effective regulation and oversight. Because blockchain operates without a 

central authority, it is difficult for regulators to monitor and control fraudulent 

activities. For instance, the lack of robust governance frameworks within 

blockchain systems has led to various types of exploitation, such as hacking 

and smart contract manipulation [30]. These security breaches often need to be 

addressed due to the decentralized nature of blockchain, which limits the ability 

of authorities to enforce compliance and protect users. This regulatory gap has 

raised concerns among stakeholders about the sustainability of blockchain 

technology, especially as it is increasingly adopted in critical areas such as 

finance and healthcare. To counteract these risks, researchers have begun to 

explore innovative methodologies, such as machine learning and graph-based 

algorithms, which can improve fraud detection accuracy by analyzing large 

datasets in real time [31]. 

Recent advancements in anomaly detection within blockchain and virtual 

environments have focused on both theoretical frameworks and practical 

applications. For example, research on Indonesian Twitter sentiment analysis 

using uncertainty sampling and the analysis of broadband sales location 

recommendation models through K-Means, DBSCAN, and other algorithms 

demonstrates the utility of clustering and active learning techniques in large 

datasets, providing insights into user behavior patterns and market 

segmentation [32]. In digital marketing, predictive modeling for campaign ROI 

using decision trees and a comparative study of sentiment classification 

techniques across platforms like Flipkart illustrate the potential of ensemble 

learning methods and sentiment analysis for optimizing marketing strategies 

[33], [34]. In the blockchain context, clustering techniques applied to transaction 

patterns in the Metaverse have been shown to identify behavior anomalies, 

while predictive modeling of blockchain stability offers pathways for improving 

resilience in decentralized networks [35], [36]. Finally, addressing financial 

transactions in the Metaverse, research has delved into risk analysis, regulatory 

implications, and predictive modeling of market dynamics such as Roblox stock 

prices, highlighting emerging areas of financial security and market forecasting 

within virtual ecosystems[37], [38]. 
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Blockchain technology has a profound impact on virtual economies by fostering 

trust through its transparent and decentralized framework. However, this same 

structure can also be a breeding ground for fraudulent activities that threaten 

user trust. The anonymity and accessibility features inherent to blockchain 

facilitate a range of illicit activities, including money laundering and fraud, which 

can undermine the integrity of virtual economies. For example, the 

pseudonymous nature of cryptocurrencies has been exploited for illegal 

transactions, resulting in significant financial losses and diminishing user 

confidence in blockchain networks. Despite the technology's potential to reduce 

dependency on intermediaries and enhance transparency, users often remain 

skeptical, particularly when high-profile cases of fraud emerge [39]. This 

paradox highlights the challenges associated with building and maintaining trust 

in decentralized systems, where users must navigate complex technology 

without always understanding its intricacies. 

Governance within blockchain networks is another critical factor that influences 

user trust. In the absence of a centralized authority, blockchain systems rely on 

distributed consensus mechanisms to maintain operational integrity. However, 

this decentralized governance can lead to inconsistencies in how blockchain 

applications are managed, creating uncertainty among users. Research 

suggests that establishing effective governance frameworks is essential for 

enhancing the reliability of blockchain systems and fostering greater trust 

among users [40]. Moreover, the integration of machine learning and data 

mining into blockchain-based systems has shown promise in improving security 

and fraud detection, thereby potentially restoring user confidence. Advanced 

analytics enable the identification of anomalies and suspicious activities in real 

time, which is crucial for maintaining the stability of virtual economies. 

Nevertheless, the effectiveness of these solutions often depends on the 

availability of high-quality data, which can be limited by privacy concerns and 

inter-organizational data-sharing challenges. As blockchain technology 

continues to evolve, addressing these complexities will be essential for building 

a secure, trustworthy, and sustainable digital economy. 

The complexity of transaction data within the Metaverse presents a significant 

challenge for effective anomaly detection, largely due to the high dimensionality 

and diversity of features. In the Metaverse, blockchain transactions involve a 

vast array of attributes, including timestamps, user behavior indicators, and 

geographic identifiers, each contributing to a multidimensional dataset. High-

dimensional data, characterized by many features compared to the number of 

samples, can lead to sparsity issues, where many features may be irrelevant or 

redundant. This sparsity complicates the learning process for machine learning 

models, often resulting in overfitting and decreased model interpretability [41], 

[42]. For instance, when analyzing user transactions, many features may 

contribute little to anomaly detection but significantly increase computational 

costs. As [42] observe, ineffective dimensionality reduction can impair both the 

accuracy and efficiency of models, underscoring the need for robust feature 

selection techniques to manage this high-dimensional data. 

In addition to high dimensionality, the diversity of features in Metaverse 

transaction data demands advanced approaches to ensure comprehensive 

anomaly detection. Diverse features provide complementary information, which 

can improve the robustness and accuracy of predictive models. However, this 
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diversity requires models to account for various data types and relationships, 

which is particularly challenging when feature characteristics differ vastly within 

the same dataset [43]. For example, features such as the value of transactions, 

frequency of interactions, and geographic origin may exhibit distinct 

distributions, necessitating careful preprocessing and feature engineering. 

Advanced feature selection techniques, such as ensemble methods and 

entropy-based selection, are essential for identifying the most informative 

features, reducing irrelevant data, and enhancing the scalability of machine 

learning models. As the Metaverse continues to expand, addressing the 

challenges posed by high-dimensional and diverse datasets will be pivotal for 

accurate and efficient anomaly detection. 

The dynamic nature of user behaviors in the Metaverse adds another layer of 

complexity to anomaly detection. User behaviors within virtual environments are 

multifaceted and continuously evolving, influenced by a combination of long-

term interests, immediate contextual factors, and interactions with other users 

or virtual entities. This dynamic aspect introduces temporal dependencies into 

transaction data, where user behaviors are not static but change over time. For 

example, [44] emphasize that user preferences are often time-sensitive, shaped 

by their interaction history and evolving contextual factors. To effectively capture 

these behavioral patterns, models need to incorporate sequential and temporal 

data analysis techniques, such as dynamic attention-integrated neural 

networks, which allow for the modeling of user interests over time. Traditional 

static models often fail to account for these temporal changes, limiting their 

ability to accurately identify anomalies in user behavior within a rapidly changing 

environment [45]. 

Furthermore, the classification of users based on their behavior types enhances 

the ability to detect anomalies by recognizing distinct behavioral patterns that 

deviate from the norm. Research [46] suggests that analyzing information-

seeking behaviors, such as searching and sharing, can help classify users and 

identify anomalous activities. This classification is particularly relevant in the 

Metaverse, where users may engage in a range of activities, from gaming to 

purchasing virtual assets, each exhibiting different behavioral patterns. 

Advanced techniques, such as graph neural networks and time-series analysis, 

can further enhance the understanding of user interactions by capturing the 

temporal dynamics and recurring behaviors in transaction data. By leveraging 

these techniques, anomaly detection systems can be better equipped to adapt 

to evolving user behaviors, thereby improving the accuracy of anomaly 

detection within the complex, dynamic landscape of the Metaverse. 

The primary goal of this study is to develop and evaluate machine learning 

models capable of effectively detecting anomalies within blockchain 

transactions in the Open Metaverse. As virtual environments become more 

complex and economically significant, the need for reliable security 

mechanisms grows, particularly for identifying suspicious behaviors or 

transactions. To address this need, the study focuses on the implementation 

and comparison of two advanced anomaly detection methods: Isolation Forest 

and Autoencoder Neural Networks. Each model is designed to identify irregular 

patterns and behaviors in transaction data, thereby enhancing the ability to 

detect potential fraud or security threats. This research aims to provide a 

comparative analysis of these models in terms of their accuracy, robustness, 
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and applicability in virtual environments, specifically the Open Metaverse. 

To achieve the study's goal, three specific objectives are outlined: first, to 

implement Isolation Forest and Autoencoder models tailored for anomaly 

detection in blockchain transactions; second, to evaluate and compare the 

models based on performance metrics such as precision, recall, and F1-score; 

and third, to assess their practical applicability within a virtual ecosystem. The 

contributions of this research are twofold. Firstly, it provides valuable insights 

into the effectiveness of Isolation Forest and Autoencoder models for detecting 

anomalies in blockchain data, which is particularly relevant given the 

decentralized and complex nature of the Open Metaverse. Secondly, this study 

enhances the security framework for virtual environments by offering a 

systematic approach to anomaly detection, which could serve as a foundation 

for future security measures and protocols in blockchain-driven ecosystems. 

Through this research, a deeper understanding of machine learning's role in 

strengthening security within the Metaverse is developed, ultimately 

contributing to safer and more resilient virtual spaces. 

Literature Review 

Anomaly Detection in Blockchain Networks 

Current research on anomaly detection within blockchain networks focuses on 

developing frameworks and methodologies to identify and mitigate irregularities. 

Blockchain networks are susceptible to a variety of anomalies, ranging from 

colluding miners to sophisticated cyber-attacks, that can compromise the 

integrity of transactions. Detecting these anomalies is essential to maintaining 

trust and security in blockchain applications, particularly in environments like 

the Metaverse, where blockchain serves as a backbone for economic 

transactions and asset management. Studies in this field often emphasize the 

importance of machine learning (ML) and artificial intelligence (AI) techniques 

in enhancing anomaly detection capabilities due to the complexity and high 

volume of blockchain data [47]. 

Several approaches integrate ML and deep learning techniques for detecting 

anomalies in blockchain transactions. For example, [48] propose ensemble 

methods that combine multiple classifiers to improve detection accuracy, 

particularly for large datasets where traditional methods may falter. Additionally, 

the application of directed dynamic attribute graphs to identify irregularities, 

emphasizing the importance of graph-based analysis in understanding complex 

transaction networks. These approaches underscore the adaptability of AI and 

ML in addressing the challenges posed by blockchain networks, which require 

continuous innovation to combat evolving security threats. 

Detecting subtle anomalies within blockchain networks remains a significant 

challenge, particularly due to the decentralized and pseudonymous nature of 

these systems. Anomalies can manifest as minor deviations from typical 

patterns, making them difficult to detect without advanced analytical tools. Many 

current detection systems rely on labeled datasets, which are often unavailable 

in decentralized networks. Research [49] highlights the limitations of deep 

neural networks when working with blockchain data, as they often require 

extensive labeled data to achieve accurate results. Additionally, the anonymous 

structure of blockchain transactions further complicates anomaly detection by 

concealing crucial contextual information. 
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To address these challenges, recent studies have introduced ensemble 

methods and unsupervised learning techniques. For instance,[50]  discusses 

the potential of unsupervised learning in blockchain networks, allowing for the 

detection of abnormalities without labeled data. This approach is particularly 

advantageous in blockchain, where decentralization and user privacy concerns 

make data labeling difficult. Furthermore, ensemble methods, which aggregate 

the strengths of multiple classifiers, provide improved accuracy by balancing out 

the weaknesses of individual models [51]. These advancements represent 

crucial steps toward effective anomaly detection in complex and decentralized 

networks, particularly as blockchain applications continue to grow in scale and 

importance. 

Isolation Forest Algorithm 

The concept of isolation in anomaly detection is effectively embodied by the 

Isolation Forest (iForest) algorithm, which identifies anomalies based on their 

tendency to be isolated from the majority of data points. This method operates 

on the premise that anomalies are few and unique, making them easier to 

separate from the bulk of the data. Instead of relying on conventional distance 

or density measures, Isolation Forest isolates these data points by randomly 

selecting features and splitting values to construct a binary tree. The algorithm 

then uses the depth at which a point is isolated as an anomaly score, with 

shallower depths indicating a higher likelihood of being anomalous. This 

innovative approach not only enhances efficiency but also effectively addresses 

the challenges associated with high-dimensional spaces, which can hinder 

traditional anomaly detection methods [52]. 

Isolation Forest's design lends itself well to various domains requiring robust 

anomaly detection, including energy monitoring, cybersecurity, and industrial 

control systems. Its unsupervised nature and adaptability to high-dimensional 

data make it particularly advantageous for real-time anomaly detection. For 

example, the algorithm has been applied to seismic anomaly detection, isolating 

events that deviate from expected patterns, thereby improving monitoring 

systems’ reliability [53]. Additionally, iForest’s adaptability extends to cloud data 

centers, where it identifies anomalies in resource usage, ensuring efficient 

operation and preventing potential disruptions [54]. Furthermore, its resistance 

to concept drift in streaming data enhances its suitability for dynamic 

environments that demand continuous learning and adaptation [55]. 

The Isolation Forest algorithm has proven particularly effective in the fields of 

fraud detection and cybersecurity, where anomaly detection is essential for 

identifying unusual patterns indicative of malicious activities. In fraud detection, 

Isolation Forest is frequently used to identify irregularities within transaction 

data, as seen in credit card fraud scenarios.demonstrate the algorithm’s ability 

to distinguish fraudulent transactions by isolating deviations from standard 

transactional behaviors, which is crucial given the volume and complexity of 

financial data processed daily. The algorithm’s efficiency in handling high-

dimensional data is particularly beneficial for detecting financial anomalies in 

real time, thus enabling proactive measures against fraud [56], [57].  

Additionally, the integration of Isolation Forest with machine learning techniques 

has enhanced fraud detection systems’ accuracy and response time, helping to 

identify and address anomalies as they occur [58]. 
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In the domain of cybersecurity, Isolation Forest is widely used for intrusion 

detection, where it helps identify unauthorized access or abnormal activities 

within network traffic. Research [59] emphasize the importance of anomaly 

detection in cybersecurity, noting that Isolation Forest’s ability to isolate threats 

in high-dimensional data makes it an ideal solution for network security. The 

algorithm’s unsupervised approach allows it to detect novel threats without 

needing labeled data, making it adaptable to the evolving nature of cyber threats 

[60]. Moreover, recent research explores the combination of Isolation Forest 

with deep learning to enhance detection capabilities further. For instance, hybrid 

approach improves detection rates and reduces false positives, enhancing the 

algorithm's effectiveness in complex environments such as financial 

transactions and network security [61]. Consequently, the Isolation Forest 

algorithm remains a valuable tool for enhancing anomaly detection across 

various applications, providing a robust framework for identifying irregularities 

in dynamic and high-risk domains. 

Autoencoder Neural Networks 

Autoencoders are a type of neural network that primarily focuses on 

unsupervised learning tasks such as dimensionality reduction, feature 

extraction, and data compression. The fundamental structure of an autoencoder 

consists of two main components: an encoder and a decoder. The encoder’s 

role is to transform the input data into a lower-dimensional, compressed 

representation, also known as the latent space. During this process, the 

encoder captures key features of the data while discarding noise and irrelevant 

information. This approach enables the model to retain the essential aspects of 

the input in a compact format. For example, in image processing, the encoder 

often utilizes convolutional layers to extract spatial features, reducing the image 

dimensions to capture the most relevant characteristics. 

On the other hand, the decoder component reconstructs the input data from the 

encoded latent representation. It reverses the compression performed by the 

encoder, aiming to generate an output that closely resembles the original input. 

The decoder often mirrors the structure of the encoder, using layers such as 

transposed convolutions or upsampling layers to recover the spatial resolution 

of the input. Together, the encoder and decoder allow the autoencoder to learn 

an efficient representation of the data, which can be applied to tasks like noise 

reduction, data denoising, and image generation [62]. The encoder-decoder 

architecture has found applications across various domains, including anomaly 

detection, where it identifies anomalies by reconstructing the input and 

measuring the reconstruction error. 

Denoising autoencoders (DAEs) represent an extension of the standard 

autoencoder framework, designed to enhance robustness by reconstructing 

clean data from corrupted inputs. DAEs introduce noise to the input data during 

the training process, which forces the model to learn more generalizable 

representations by filtering out this noise. This technique is particularly 

beneficial in scenarios where data is prone to corruption, such as image and 

audio processing, as well as text analysis. The addition of noise can take 

various forms, including Gaussian noise or dropout, making DAEs effective in 

applications that involve incomplete or noisy datasets. 

Variational autoencoders (VAEs), another notable variant, combine traditional 
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autoencoders with principles from Bayesian inference to create a probabilistic 

model. Unlike standard autoencoders, which produce a deterministic latent 

representation, VAEs encode the input into a distribution, allowing the model to 

sample from this distribution to generate new data points. This makes VAEs 

particularly useful in generative tasks, where the goal is to create realistic data 

samples based on learned features. The use of a latent space characterized by 

distributions provides flexibility and has led to successful applications in areas 

such as image synthesis, drug discovery, and anomaly detection [63]. 

Comparative Studies in Anomaly Detection 

Comparative studies in anomaly detection often focus on unsupervised 

algorithms due to their ability to identify irregular patterns without the need for 

labeled datasets. In recent years, various research efforts have evaluated the 

performance of these algorithms across domains, highlighting their adaptability 

and limitations. For instance, [64] conducted a comprehensive analysis of 

nineteen unsupervised anomaly detection algorithms across multiple datasets, 

revealing the importance of selecting appropriate evaluation metrics and 

standardized datasets to ensure consistent comparisons. This study 

demonstrated that algorithms like Isolation Forest and One-Class SVM are 

effective in identifying anomalies, though performance varied significantly 

depending on data characteristics. Similarly, [65] explored the effectiveness of 

unsupervised algorithms in detecting zero-day attacks in cybersecurity, 

emphasizing how different feature selection techniques and algorithmic 

approaches impact detection accuracy.  

Other studies have examined the use of unsupervised algorithms in domains 

like image segmentation and clustering. Research [66] introduced a Voronoi-

based method for adaptive color image segmentation, comparing its 

performance against other unsupervised methods and finding improvements in 

both segmentation quality and computational efficiency. In the field of clustering, 

[67] analyzed hierarchical clustering techniques, evaluating their strengths and 

weaknesses compared to more traditional clustering algorithms such as K-

means. These comparative studies illustrate that, while unsupervised 

algorithms are versatile, their success is highly dependent on the specific 

context in which they are applied, as well as on the data preprocessing and 

feature selection steps involved. 

The effectiveness of unsupervised learning models in anomaly detection is 

largely influenced by the types of data used and the feature selection strategies 

applied. Different algorithms tend to perform better on specific types of data, 

with certain assumptions about distribution or feature relationships often 

embedded within their design. Clustering algorithms like DBSCAN and 

Gaussian Mixture Models exhibit varying performances depending on whether 

the data is linearly separable or possesses distinct density clusters. Such 

findings suggest that selecting an algorithm appropriate for the dataset's 

characteristics can greatly enhance model accuracy. Similarly, [68] highlighted 

the relevance of multispectral images for clustering applications, indicating that 

certain data types may require tailored anomaly detection techniques to capture 

subtle patterns effectively. 

Feature selection plays a pivotal role in the performance of unsupervised 

models, as it directly influences the algorithm's ability to discern meaningful 
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patterns. Research [69] demonstrated that implementing a meta-learning 

approach with unsupervised feature selection significantly improved outlier 

detection performance, especially in complex datasets. This finding is echoed 

by [70], who discussed how reducing feature redundancy can optimize 

unsupervised models for tasks like aspect detection. These studies collectively 

indicate that the choice of features is just as important as the choice of 

algorithm, underscoring the necessity of rigorous preprocessing to enhance 

model reliability. By carefully considering data types and feature selection 

strategies, researchers and practitioners can optimize unsupervised algorithms, 

thus improving their applicability across various anomaly detection tasks. 

Method 

The research method for this study consists of several steps to ensure a 

comprehensive and accurate analysis. The flowchart in figure 1 outlines the 

detailed steps of the research method. 

 

Figure 1 Research Method Flowchart 

Dataset Description   

The dataset used in this study originates from a simulation provided by the Open 

Metaverse initiative, which focuses on creating a comprehensive framework to 

support blockchain-driven virtual environments. This data simulates user 

interactions and transactions within a virtual metaverse ecosystem, 

encapsulating a wide range of activities typically found in blockchain-based 

environments. As such, it provides a realistic representation of user behaviors, 

transaction flows, and potential security issues inherent to these decentralized 

systems. Given the complex nature of the metaverse and its reliance on 

blockchain technology, this dataset serves as a suitable benchmark for 

evaluating the efficacy of anomaly detection methodologies.   

The data was curated to encompass various types of transactions, including 

user-to-user transfers, purchases, sales, and potentially malicious activities 

such as scams and phishing attacks. The incorporation of these diverse 

transaction types aims to simulate real-world complexities and vulnerabilities 

associated with blockchain networks in the metaverse. The dataset's structure 

and features were specifically chosen to enable the testing and comparison of 

different machine learning models for anomaly detection, ensuring the 

relevance of findings to real-world applications in the emerging metaverse 

landscape. 

The dataset contains multiple features designed to capture various aspects of 

blockchain transactions and user behaviors within the metaverse. These 

features shown in Table 1. 
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Table 1. Dataset Features 

Feature Description 

Timestamp 
Records the date and time of each transaction, enabling 

temporal analysis and trend identification. 

Hour of Day 

Extracted from the timestamp, this feature indicates the hour 

during which a transaction occurred, offering insights into user 

activity patterns. 

Sending 

Address 

Represents the blockchain address of the sender involved in the 

transaction, useful for analyzing transaction patterns. 

Receiving 

Address 

Represents the blockchain address of the recipient involved in 

the transaction, helping identify anomalies in connections 

between users. 

Amount 
Specifies the transaction value in simulated currency, key for 

detecting unusual patterns such as large transfers. 

Transaction 

Type 

Categorical feature denoting the nature of the transaction (e.g., 

"transfer," "sale," "purchase," "scam"). Used for classification and 

anomaly detection. 

Location 

Region 

Indicates the simulated geographical region of the user 

performing the transaction, assisting in regional pattern analysis. 

IP Prefix 
Represents the simulated IP address prefix linked to the 

transaction, aiding network-based anomaly detection. 

Login 

Frequency 

Captures how often a user logs into the system, offering insights 

into their usage behavior. 

Session 

Duration 

Represents the duration of a user's session, providing context for 

identifying anomalous activity based on session length. 

Purchase 

Pattern 

Describes a user's purchasing behavior as "focused," "random," 

or "high_value," useful for behavioral profiling. 

Age Group 
Categorizes users as "new," "established," or "veteran," 

reflecting their experience level and associated risk profile. 

Risk Score 
A calculated value that represents the perceived risk level of 

each transaction based on a predefined model. 

Anomaly 

Labels the transaction as "low_risk," "moderate_risk," or 

"high_risk," used as the target variable for evaluating anomaly 

detection models. 

The dataset provides a comprehensive and diverse array of features that 

capture the nuances of blockchain transactions in a simulated metaverse 

environment, offering valuable opportunities for developing and testing machine 

learning models aimed at anomaly detection. 

Data Preprocessing   

Data cleaning forms a crucial step in ensuring the integrity and accuracy of the 

dataset used for anomaly detection in the Open Metaverse blockchain 

transactions. In this study, the initial dataset was checked for missing or null 

values across all columns. While no missing values were found in the primary 

dataset, common data cleaning strategies such as imputation or dropping 

missing data were prepared as contingencies. The absence of missing values 

allowed for a seamless transition to subsequent preprocessing tasks, reducing 
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the risk of skewed analyses or inconsistencies within the dataset. Additionally, 

ensuring the consistency and format of data types, such as converting 

timestamps into appropriate datetime objects, contributed to the accuracy of 

time-based feature extraction for the model. 

To prepare the data for machine learning models, categorical variables were 

encoded using one-hot encoding. This method was applied to features such as 

"Transaction Type," "Location Region," "Purchase Pattern," and "Age Group." 

By transforming these variables into binary indicators, the model gained the 

capacity to interpret non-numeric values without introducing biases caused by 

arbitrary label encodings. Simultaneously, numerical features, including 

"Amount," "Login Frequency," "Session Duration," and "Risk Score," were 

standardized using a `StandardScaler` to ensure they were on a comparable 

scale. This standardization was necessary to enhance the performance of 

distance-based algorithms, like Isolation Forest and Autoencoder Neural 

Networks, by preventing features with larger scales from dominating model 

predictions. 

The preprocessed data was then split into training and testing datasets using a 

stratified split to maintain the distribution of the target variable, "Anomaly." The 

training set comprised 70% of the data, while the remaining 30% was reserved 

for testing, ensuring a representative evaluation of model performance. To 

streamline preprocessing and transformation steps, a pipeline was constructed 

to apply one-hot encoding and standardization consistently across both training 

and testing sets. This approach minimized data leakage and preserved the 

consistency of preprocessing steps throughout the model development 

lifecycle. The resulting preprocessed training and testing datasets provided a 

robust foundation for evaluating the efficacy of the anomaly detection models. 

Exploratory Data Analysis (EDA)   

The initial exploratory data analysis involved a statistical overview of the 

dataset's key numerical features, including "Amount," "Login Frequency," 

"Session Duration," and "Risk Score." The mean values for these features were 

502.57 for transaction amounts, 4.18 for login frequency, 69.68 minutes for 

session duration, and 44.95 for risk scores, highlighting the central tendency of 

these variables within the dataset. The median values indicated that half of the 

dataset recorded transaction amounts of 500.03 or less, login frequencies of 

four or fewer sessions, session durations of 60 minutes or less, and risk scores 

of 40 or lower. These measures provided insights into the data distribution and 

central values, while the mode highlighted recurring values for each feature, 

including a common transaction amount of 0.01 and session durations of 23 

minutes. This initial statistical assessment revealed key patterns in the dataset, 

helping to identify potential areas of interest for further analysis. For example, 

the variance in session durations suggested significant differences in user 

engagement levels within the Open Metaverse. Additionally, the mode values 

for "Login Frequency" and "Session Duration" suggested possible clustering 

patterns among user behavior, which might have implications for anomaly 

detection modeling. 

Visualizations were employed to gain deeper insights into the distribution and 

relationships among the features. A histogram depicting the distribution of 

transaction amounts (Figure 2) revealed a right-skewed distribution, indicating 



 International Journal Research on Metaverse 

 

Buchdadi and Al-Rawahna (2025) Int. J. Res. Metav. 

 

37 

 

 

that while many transactions had lower values, there were a few high-value 

transactions. This visualization suggested the presence of potential outliers or 

high-value anomalies that could influence anomaly detection models.  

 

Figure 2 Distribution of Transaction Amount 

Similarly, a box plot of session durations (Figure 3) highlighted outliers in the 

data, emphasizing the need for careful handling of these extreme values during 

model training to ensure robust performance. 

 

Figure 3 Box Plot of Session Duration 

To explore relationships among numerical features, a heatmap of the correlation 

matrix was generated (Figure 4). This heatmap illustrated the strength and 

direction of correlations between features, such as a moderate positive 

correlation between "Session Duration" and "Risk Score."  
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Figure 4 Correlation Matrix Heatmap 

Understanding these correlations helped to identify potential feature 

interactions that could influence the model's anomaly detection capabilities. 

Finally, a bar chart depicting the frequency of transaction types (Figure 5) 

showed that "Transfer," "Sale," and "Purchase" were the most common 

transaction categories, providing context for how user behaviors might vary 

based on transaction type. Such insights were critical in shaping the data 

preprocessing and feature selection strategies for the subsequent modeling 

phases. 

 

Figure 5 Frequency of Transaction Types 

Model Implementation   

The Isolation Forest algorithm was employed for anomaly detection due to its 

suitability for high-dimensional datasets and its capacity to effectively isolate 
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outliers. The primary parameters of the model included the number of 

estimators, set to 100 trees, and the contamination factor, which was 

automatically estimated based on the proportion of expected anomalies in the 

data. These parameter settings provided a balance between computational 

efficiency and model precision. The implementation of the Isolation Forest 

model utilized the scikit-learn library, ensuring a robust and standardized 

approach to model construction. A random state parameter was set for 

reproducibility, maintaining consistency across model runs and comparisons. 

In implementing the Isolation Forest model, the dataset was first preprocessed 

using one-hot encoding for categorical variables, including transaction type, 

location region, purchase pattern, and age group, followed by feature scaling 

for numerical variables. The preprocessed data was then split into training and 

testing sets using a 70-30 stratified split to ensure balanced representation of 

high-risk anomalies. The Isolation Forest model was fitted to the training data 

within a pipeline that facilitated preprocessing and model fitting in a streamlined 

manner. The output predictions were transformed into binary classifications, 

where anomalous instances were marked as '1' and normal instances as '0' for 

further evaluation. 

The autoencoder neural network was designed as an unsupervised model to 

detect anomalies through reconstruction error. The architecture consisted of an 

input layer that matched the dimensionality of the input features, followed by 

multiple hidden layers that progressively reduced in size, forming the encoder 

component. The encoder's purpose was to compress the input data into a lower-

dimensional latent space, capturing essential patterns and discarding noise. 

The bottleneck layer represented this compressed latent space, serving as a 

compact feature representation of the input data. 

The decoder mirrored the encoder with increasing dimensions in each 

subsequent layer, reconstructing the original input data from the compressed 

latent representation. ReLU activation functions were employed for the hidden 

layers to introduce non-linearity, while the output layer utilized a linear or 

sigmoid activation function to match the nature of the original data. The model 

was trained using the Mean Squared Error (MSE) loss function and optimized 

using the Adam optimizer, known for its adaptability and efficiency. The training 

process involved a specified number of epochs and batch size, fine-tuned to 

balance computational efficiency with model performance. 

Evaluation Metrics   

The evaluation of the models' performance focused on four key metrics: 

precision, recall, F1-score, and the area under the Receiver Operating 

Characteristic curve (AUC-ROC). Precision measured the proportion of true 

positive anomalies correctly identified among all predicted positives, reflecting 

the model's ability to minimize false positives. Recall quantified the model's 

capacity to detect true anomalies among all actual anomalies, addressing the 

potential for missed detections. The F1-score represented the harmonic mean 

of precision and recall, providing a balanced measure of model accuracy and 

robustness in identifying anomalies. 

The AUC-ROC metric evaluated the trade-off between true positive and false 

positive rates across different thresholds, offering a comprehensive view of the 

model's discriminative power. The importance of balancing false positives and 
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false negatives was emphasized, given the critical need for accurate anomaly 

detection in the Open Metaverse blockchain context. False positives could lead 

to unnecessary interventions, while false negatives posed a risk to the integrity 

and security of blockchain transactions. 

Experimental Setup   

The experimental setup employed k-fold cross-validation with k set to 5 to 

ensure robust performance evaluation and minimize bias in the training and 

testing process. The implementation utilized the Python programming 

language, with key libraries including NumPy, Pandas, scikit-learn, 

TensorFlow/Keras, Matplotlib, and Seaborn. These tools facilitated data 

preprocessing, model implementation, and visualization of results. 

Computational resources included a local machine equipped with a multi-core 

CPU and 16GB of RAM, which was sufficient to handle the dataset size and 

model complexity. This configuration supported efficient execution of the 

experiments and provided a reliable environment for model evaluation and 

comparison. 

Result and Discussion 

Performance of Isolation Forest   

The performance of the Isolation Forest model was evaluated using a range of 

metrics, including precision, recall, F1-score, and the area under the Receiver 

Operating Characteristic curve (AUC-ROC). The confusion matrix provided a 

breakdown of true positives (TP), true negatives (TN), false positives (FP), and 

false negatives (FN). The results indicated a precision of 0.85, meaning that 

85% of the anomalies detected were true positives, while recall stood at 0.75, 

reflecting the model’s ability to identify 75% of the actual anomalies in the 

dataset. The F1-score, which balances precision and recall, was 0.80, indicating 

a robust overall performance. The AUC-ROC of 0.82 suggested a good trade-

off between true positive and false positive rates, as evidenced by the ROC 

curve plot, which demonstrated a consistent increase in the true positive rate 

against varying thresholds of false positives. 

The threshold selection for anomaly detection was a crucial component of 

model performance. Lowering the threshold increased the recall but came at 

the cost of a higher false positive rate, potentially leading to more false alarms. 

Conversely, raising the threshold improved precision but risked missing actual 

anomalies. This balance highlighted the trade-off inherent in using an 

unsupervised model like Isolation Forest in complex environments such as the 

Open Metaverse. Careful tuning of the contamination factor and iterative 

evaluation allowed for an optimal trade-off to minimize false positives without 

sacrificing critical anomaly detection capabilities. 

Performance of Autoencoder Neural Network   

The Autoencoder Neural Network was evaluated for its ability to detect 

anomalies based on reconstruction error. The training and validation loss curves 

revealed the network's learning dynamics across epochs, showing a gradual 

decline in loss, which stabilized as the model converged. This trend suggested 

effective learning during the training phase. The reconstruction error histogram 

demonstrated a clear separation between normal transactions and anomalies, 
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facilitating the determination of an appropriate anomaly threshold. Anomalous 

data points exhibited significantly higher reconstruction errors compared to 

normal transactions, enabling the model to effectively discriminate between the 

two categories. 

The ROC curve for the Autoencoder model illustrated a strong trade-off between 

true positive and false positive rates, yielding an AUC-ROC value of 0.85. 

Precision and recall were recorded at 0.87 and 0.78, respectively, resulting in 

an F1-score of 0.82. These metrics indicated that the Autoencoder 

outperformed the Isolation Forest model across most evaluation metrics, 

particularly in terms of precision and overall accuracy. This improved 

performance can be attributed to the network's ability to learn complex patterns 

and detect subtle deviations in transaction data within the Open Metaverse 

environment. 

The analysis highlighted the Autoencoder's strength in reconstructing normal 

transactions with a high degree of accuracy, making it suitable for anomaly 

detection in blockchain transactions. However, challenges were encountered 

during training, including overfitting due to the high dimensionality of the data. 

Regularization techniques, such as dropout and early stopping, were employed 

to mitigate these challenges and enhance generalization. The results 

underscored the importance of fine-tuning hyperparameters and managing data 

complexity to achieve robust performance in anomaly detection tasks. 

Comparative Analysis   

The comparative performance of the Isolation Forest and Autoencoder models, 

as visualized in  , was assessed using a range of evaluation metrics: precision, 

recall, F1-score, and AUC-ROC. The graph in figure 6 clearly illustrates that the 

Autoencoder model outperformed the Isolation Forest model across all metrics, 

highlighting its superior ability to detect anomalies in the dataset. Precision for 

the Isolation Forest was 0.85, meaning that 85% of the anomalies it flagged 

were correctly identified as true positives, whereas the Autoencoder achieved 

a slightly higher precision of 0.87, indicating greater accuracy in identifying true 

anomalies. For recall, which measures the model’s ability to detect all actual 

anomalies, the Isolation Forest scored 0.75, while the Autoencoder 

demonstrated improved sensitivity with a recall of 0.78. This suggests that the 

Autoencoder was more effective in capturing a higher proportion of true 

anomalies. The F1-score, which balances precision and recall, was 0.80 for the 

Isolation Forest and 0.82 for the Autoencoder, as shown in the graph. This 

further confirms the Autoencoder’s enhanced performance in both accurately 

detecting anomalies and minimizing false positives and negatives. Additionally, 

the AUC-ROC metric showed that the Autoencoder scored 0.85 compared to 

the Isolation Forest's 0.82. A higher AUC-ROC score for the Autoencoder 

indicates better overall performance in distinguishing between normal and 

anomalous transactions across various threshold settings. 

Overall, the graph and the metrics emphasize the Autoencoder’s advantage in 

anomaly detection for this dataset. The Autoencoder’s higher precision, recall, 

F1-score, and AUC-ROC suggest it is a more effective and reliable model for 

identifying anomalous behavior in the Open Metaverse blockchain transactions. 

Its performance highlights its capability to provide better security and more 

accurate monitoring in real-world applications. 
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Figure 6 Comparison of Evaluation Metrics 

The comparative analysis revealed that the Autoencoder outperformed the 

Isolation Forest model in terms of precision, recall, F1-score, and AUC-ROC. 

This superior performance can be attributed to the Autoencoder's ability to learn 

complex patterns in the data, enabling it to better distinguish between normal 

and anomalous transactions. The encoder-decoder structure of the 

Autoencoder facilitated the capture of intricate relationships within the input 

features, resulting in a more nuanced identification of anomalies. In contrast, 

the Isolation Forest's reliance on tree-based partitioning was effective but less 

adaptable to subtle variations within high-dimensional data. 

Hyperparameters had a significant impact on model performance for both 

algorithms. For the Isolation Forest, the number of estimators and the 

contamination factor were critical in determining the model's sensitivity and 

specificity. Adjustments to these parameters influenced the balance between 

detecting true anomalies and minimizing false positives. In the case of the 

Autoencoder, hyperparameters such as the number of layers, units per layer, 

activation functions, and regularization techniques played a pivotal role in 

preventing overfitting and enhancing generalization. The learning rate of the 

optimizer and the batch size during training also had notable effects on 

convergence speed and model stability. 

In summary, the Autoencoder demonstrated a slight advantage over the 

Isolation Forest in detecting anomalies within Open Metaverse blockchain 

transactions, as evidenced by its higher precision, recall, and overall predictive 

accuracy. The choice of model depends on the specific objectives of anomaly 

detection, with the Autoencoder being preferable for scenarios requiring 

nuanced pattern recognition, and the Isolation Forest being useful for faster, 

simpler partition-based detection strategies. This comparative study 

emphasized the importance of tailoring hyperparameters and model selection 

to the unique characteristics of blockchain transaction data. 
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Feature Importance and Interpretability   

The Isolation Forest algorithm inherently provides a measure of feature 

importance, which is derived from the model's isolation mechanism that 

partitions the data to identify anomalies. By analyzing the feature importance 

scores, it became evident that certain features contributed more prominently to 

the identification of anomalies in Open Metaverse blockchain transactions. The 

features `transaction amount`, `login frequency`, and `risk score` emerged as 

the most influential in detecting anomalous behaviors. High transaction 

amounts, coupled with unusual login frequencies, often correlated with 

anomalous patterns, indicating potential outlier behavior. Additionally, the `risk 

score`, a composite measure based on user activity, consistently ranked as a 

critical determinant in isolating atypical transactions. 

Further analysis revealed that geographical `location region` and `purchase 

pattern` also had a notable impact on the model's decision-making process. 

Transactions originating from specific regions or exhibiting high-value purchase 

patterns were more likely to be flagged as anomalies. This highlights the 

potential for regional or behavioral patterns in user activity that deviate from 

expected norms, thereby aiding in identifying potential fraudulent activities. The 

interpretability of these feature importance scores enabled a more 

comprehensive understanding of how the Isolation Forest distinguishes 

between normal and anomalous transactions, emphasizing the algorithm’s 

reliance on specific attributes to partition data effectively. 

The Autoencoder model's interpretability primarily hinged on the analysis of 

reconstruction errors across features. The reconstruction error, representing the 

difference between the input and output of the model, served as a critical metric 

for identifying anomalies. High reconstruction errors indicated that the model 

struggled to accurately represent the input data within its learned latent space, 

suggesting that such instances deviated significantly from the learned patterns 

of normal transactions. Upon closer examination, features such as `amount`, 

`session duration`, and `age group` exhibited higher reconstruction errors for 

anomalous instances. This suggested that these features were key indicators 

of irregularities, as the model's inability to accurately reconstruct them pointed 

to their deviation from the expected distribution. 

The comparison of feature importance between the Isolation Forest and 

Autoencoder models revealed complementary strengths. While the Isolation 

Forest relied on explicit feature partitioning to isolate anomalies, the 

Autoencoder captured subtle deviations through reconstruction errors in a 

lower-dimensional space. This combination provided a holistic view of feature 

relevance, with the Isolation Forest highlighting primary influential attributes and 

the Autoencoder capturing nuanced variations that might not be immediately 

apparent. The integration of these insights offers a more robust understanding 

of anomaly detection in complex datasets like Open Metaverse blockchain 

transactions. 

In summary, the interpretability of the Isolation Forest and Autoencoder models 

emphasized the role of key features in detecting anomalies. The Isolation 

Forest's feature importance scores shed light on attributes that strongly 

influenced its decision boundaries, while the Autoencoder's analysis of 

reconstruction errors and latent space representations highlighted subtler 
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irregularities. Together, these models offer a comprehensive approach to 

understanding and detecting anomalies, with feature interpretability serving as 

a crucial component for validating and refining anomaly detection strategies in 

blockchain transactions. 

Implications for the Open Metaverse   

The integration of anomaly detection models, such as the Isolation Forest and 

Autoencoder Neural Networks, into the Open Metaverse's transaction system 

holds the potential to significantly enhance security. These models can be 

deployed as layers of defense, continuously monitoring transaction streams for 

deviations from normal behavior patterns. The Isolation Forest can be used to 

rapidly identify and isolate outlier transactions based on feature partitioning, 

while the Autoencoder can monitor the reconstruction errors in data to detect 

subtle deviations that indicate potential fraud or irregular activity. By embedding 

these models within the transaction processing workflow, blockchain-based 

systems in the Metaverse can detect and respond to anomalous behavior in 

near real-time, minimizing the risk of fraudulent activities, data breaches, and 

unauthorized transactions. 

The effectiveness of this integration lies in the models' adaptability to dynamic 

datasets and evolving fraud tactics. As user behavior and transaction patterns 

change, both the Isolation Forest and Autoencoder models can be retrained or 

fine-tuned to maintain their accuracy and relevance. This dynamic adjustment 

capability ensures that the models remain resilient against emerging threats, 

thus enhancing the overall security posture of Open Metaverse platforms. 

Furthermore, the models’ interpretability, especially regarding feature 

importance and reconstruction errors, allows system administrators to gain 

valuable insights into the nature of detected anomalies, contributing to improved 

decision-making and targeted countermeasures. 

The feasibility of deploying these models for real-time monitoring within the 

Open Metaverse presents a critical opportunity to strengthen its transaction 

security framework. Real-time implementation involves processing continuous 

streams of data, which requires efficient algorithms and scalable infrastructure 

to ensure minimal latency and accurate anomaly detection. The Isolation Forest, 

with its tree-based partitioning strategy, can provide fast anomaly detection due 

to its computational efficiency. Similarly, Autoencoder-based models, once 

trained, offer rapid inference capabilities, enabling them to assess transactions 

and raise alerts promptly based on deviations in their reconstruction patterns. 

Real-time deployment necessitates consideration of computational resources, 

including the use of cloud-based systems or distributed networks to handle high 

transaction volumes and ensure scalability. Leveraging edge computing for 

initial anomaly detection can also reduce processing delays and enhance 

responsiveness. Moreover, integrating these models with existing blockchain 

protocols in the Metaverse ensures seamless compatibility, enabling efficient 

detection and prevention mechanisms without disrupting user experience. This 

real-time detection capability contributes to a more resilient and responsive 

security architecture for the Metaverse ecosystem. 

The implementation of robust anomaly detection models in the Open Metaverse 

transaction systems delivers significant benefits to a wide range of 

stakeholders. For end-users, enhanced security measures translate into 
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increased trust in the platform's integrity and safety. Users gain confidence in 

conducting transactions within the Metaverse, knowing that sophisticated 

detection systems actively monitor and protect their assets from fraudulent 

activities. This trust is crucial for the long-term adoption and growth of the 

Metaverse as a thriving digital economy, where individuals engage in financial, 

social, and commercial activities with reduced risk. 

For platform administrators, integrating these models mitigates operational risks 

and reduces potential liabilities associated with security breaches and financial 

fraud. The protection of assets, data, and user information becomes a tangible 

reality, supported by advanced machine learning capabilities that detect 

anomalies before they can escalate into significant issues. Moreover, 

businesses and developers within the Metaverse benefit from a more secure 

and stable transaction environment, fostering innovation, collaboration, and 

economic growth. These models' ability to protect and enhance the Metaverse 

ecosystem creates a virtuous cycle of trust, security, and user engagement, 

driving further expansion and adoption. 

Conclusion 

The results of this study demonstrated the effectiveness of using Isolation 

Forest and Autoencoder Neural Networks for anomaly detection within Open 

Metaverse blockchain transactions. The Isolation Forest model achieved a 

precision of 0.85 and an F1-score of 0.80, indicating its strength in identifying 

high-risk anomalies without excessive false positives. Similarly, the 

Autoencoder Neural Network model showed promising performance, achieving 

a precision of 0.87 and an F1-score of 0.82, highlighting its capability in 

capturing complex patterns through reconstruction errors. Both models 

exhibited strong AUC-ROC values, confirming their robustness in distinguishing 

between normal and anomalous transactions. These findings validated the 

research objectives, which aimed to develop and evaluate machine learning 

models for accurate and reliable anomaly detection in a blockchain-based 

virtual environment. 

The comparative analysis underscored the nuanced differences in model 

performance, with the Autoencoder proving particularly effective in capturing 

subtle anomalies due to its representation learning capabilities. The study 

confirmed that both models have unique strengths, making them viable for 

enhancing security in Open Metaverse transactions. Collectively, the findings 

provide a strong foundation for developing advanced anomaly detection 

frameworks tailored to decentralized and highly dynamic digital ecosystems. 

This research contributed to the field of anomaly detection by advancing the 

application of machine learning techniques within virtual environments, 

specifically focusing on Open Metaverse blockchain transactions. The 

integration of Isolation Forest and Autoencoder Neural Networks illustrated how 

these models can enhance security measures by detecting irregular patterns 

and anomalous behaviors in real-time transaction data. The comparative 

analysis offered novel insights into the relative strengths and weaknesses of 

each model, highlighting the trade-offs between computational efficiency and 

detection accuracy. Such insights are valuable for practitioners and researchers 

aiming to strengthen the security and integrity of decentralized digital 

ecosystems. 
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The study also emphasized the importance of leveraging both traditional and 

deep learning approaches for anomaly detection, paving the way for more 

comprehensive detection systems. This work demonstrated that a hybrid 

approach, incorporating multiple models and diverse methodologies, can offer 

a robust defense mechanism against emerging threats within the Metaverse, 

thereby fostering trust and stability in virtual transactions. 

Several limitations were identified during the study, primarily related to the use 

of simulated data. While simulated data facilitated the modeling and testing 

processes, it may not fully capture the complexity and unpredictability of real-

world Metaverse transactions. The lack of real-world blockchain transaction 

data limited the generalizability of the findings and may require further validation 

in practical settings. Additionally, model constraints, such as the sensitivity of 

the Autoencoder to hyperparameter tuning and the dependence of the Isolation 

Forest on the contamination factor, presented challenges that could influence 

detection accuracy. 

Another limitation was the potential presence of overfitting during the training of 

the Autoencoder model, particularly given the complex nature of high-

dimensional data. This issue highlighted the need for careful optimization and 

cross-validation to ensure the model’s performance remains consistent across 

different data distributions. 

Future research should focus on incorporating real-time blockchain transaction 

data to improve the validity and applicability of the proposed models. Access to 

real-world datasets would provide valuable insights into the performance of 

these models under realistic conditions, enabling more accurate evaluations. 

Exploration of other advanced algorithms, such as Graph Neural Networks, is 

also recommended to capture the relational structures inherent in blockchain 

data, potentially enhancing anomaly detection capabilities further. 

Incorporating additional features, such as user behavioral data, transaction 

history, and metadata, could enhance the models' ability to detect sophisticated 

anomalies. By expanding the scope of data inputs and refining model 

architectures, future studies can develop more comprehensive and adaptable 

anomaly detection systems that keep pace with the evolving dynamics of the 

Open Metaverse and its transactional ecosystem. 
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