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ABSTRACT 

This study presents a comparative analysis of Linear Regression and Random Forest 

Regression models to predict player performance in EA SPORTS FC 25 using in-

game attributes. The primary objective is to evaluate these models in terms of their 

accuracy and effectiveness in predicting player ratings based on key attributes like 

Ball Control, Dribbling, Defense, and Reactions. The dataset comprises 17,737 player 

records with multiple performance indicators, preprocessed to ensure quality data for 

modeling. The research process involves data exploration, model development, and 

evaluation using metrics such as Mean Absolute Error (MAE), Root Mean Squared 

Error (RMSE), and the Coefficient of Determination (R²). Results indicate that the 

Random Forest model outperforms the Linear Regression model, achieving a lower 

MAE and RMSE, and a higher R² score, highlighting its ability to capture complex, 

non-linear relationships among player attributes. The study’s findings underscore the 

significance of ensemble models in gaming analytics and provide insights for gamers 

and developers to optimize gameplay strategies and improve game mechanics. 

Limitations include data constraints, and recommendations for future research 

suggest incorporating more diverse player data and exploring advanced algorithms. 

Keywords Player Performance, EA SPORTS FC 25, Linear Regression, Random Forest 

Regression, Gaming Analytics 

Introduction 

EA SPORTS FC 25 emerges as a pivotal installment in the football simulation 

genre, reflecting the broader significance of video games within the gaming 

industry. The video game sector has established itself as a dominant force in 

global entertainment, surpassing both music and cinema in revenue generation 

[1]. This economic prominence underscores the cultural shift where video 

games, including flagship titles like EA SPORTS FC 25, have become primary 

entertainment mediums for diverse demographics ranging from children to 

adults. The success of EA SPORTS FC 25 is emblematic of this trend, 

demonstrating how advanced game design and immersive experiences 

contribute to sustained player engagement and industry growth. 

The social and cultural dimensions of EA SPORTS FC 25 further highlight its 

importance in the gaming landscape. Video games serve as platforms for social 

interaction, fostering connections among players through cooperative gameplay 

and shared experiences [2]. EA SPORTS FC 25 leverages these dynamics by 

offering robust online multiplayer features that enhance community building and 

player collaboration [3]. Additionally, the game's ability to influence social 

behaviors and cultural norms aligns with the broader recognition of video games 
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as significant cultural artifacts [4], [5]. By integrating complex narratives and 

realistic simulations, EA SPORTS FC 25 not only entertains but also contributes 

to the ongoing discourse on the cultural and psychological impacts of video 

gaming [6], [7]. 

The importance of player attributes in gameplay and team building is a critical 

factor in the success of EA SPORTS FC 25, mirroring trends observed in both 

traditional sports and esports. Player attributes encompass a range of 

characteristics, including skills, cognitive abilities, and social dynamics, all of 

which significantly influence individual performance and overall team 

effectiveness. Research [8] introduce a 'nested matching' approach that 

emphasizes aligning player attributes with team strategies to enhance 

engagement and retention in multiplayer video games. This methodology 

underscores how understanding individual player skills can lead to more 

effective team compositions, thereby improving the overall gaming experience. 

Similarly, [9] highlight the impact of social player experiences, suggesting that 

interactions influenced by audience engagement can affect gameplay 

performance, thereby reinforcing the relational aspect of player attributes. 

Furthermore, assessing individual performance metrics plays a pivotal role in 

effective team selection within EA SPORTS FC 25. Research [10] argues that 

traditional statistics may only partially capture a player's contribution to team 

success, advocating for a more nuanced understanding of individual 

performance. This perspective is supported by [11], who demonstrate how 

analytics can quantify player performance and inform strategic team decisions 

in basketball, a concept directly applicable to football simulations. Additionally, 

cognitive abilities and personality traits are integral to gameplay success, as 

evidenced by [12], who found that individual differences in these areas can 

predict performance in car-soccer video games. Study [13] further emphasize 

the importance of tactical awareness and decision-making skills, indicating that 

cognitive and psychological readiness significantly impact game performance. 

The integration of advanced metrics, as discussed by [14], allows for a 

comprehensive evaluation of player contributions, moving beyond traditional 

metrics to consider contextual factors that influence team success. 

Predictive modeling using both linear and ensemble learning methods has 

proven effective across various domains, offering insights into complex data-

driven challenges. Studies such as the application of Random Forest algorithms 

on stock price movements in the Vietnamese banking sector [15] and the 

comparative analysis of logistic regression and Random Forest for predicting e-

commerce customer behavior [16] illustrate the ability of ensemble methods to 

enhance predictive accuracy. Similarly, ensemble learning techniques have 

been leveraged for purchase prediction in digital promotions [17] and campaign 

ROI prediction using decision trees and Random Forest [18], showcasing their 

strength in improving marketing-related outcomes. The study of predictive 

modeling of blockchain stability through machine learning [19] and anomaly 

detection in digital currency trading using clustering and density-based 

approaches [20] further underscores the applicability of these methods in 

diverse, high-dimensional data contexts. Additionally, predictive modeling in 

virtual environments, such as Roblox stock price trends using machine learning 

[21] and the determinants of virtual property prices in Decentraland [22], 

highlights the utility of data-driven approaches in analyzing complex, evolving 
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digital markets. These works collectively emphasize the versatility and 

robustness of predictive modeling frameworks, informing the development of 

optimized models for player performance prediction in gaming contexts. 

Predicting player performance plays a pivotal role in enhancing gaming 

strategies within EA SPORTS FC 25, enabling players and teams to make 

informed decisions based on statistical analyses and predictive modeling. 

Advanced analytics, such as exploratory data analysis (EDA), facilitate the 

identification of patterns and trends within in-game data, which are essential for 

optimizing strategic choices. Research [23] demonstrate that applying EDA 

techniques to game-specific data allows players to discern their strengths and 

weaknesses, thereby tailoring their gameplay strategies to maximize 

effectiveness. This data-driven approach not only elevates individual 

performance but also synergizes team dynamics by aligning strategies with 

collective insights, leading to more cohesive and effective gameplay. 

Moreover, the integration of reinforcement learning (RL) into player 

performance prediction has shown significant promise in adaptive strategy 

development. Study [24] explore how reinforcement learning can incorporate 

strategy diversity, enabling players to adjust their tactics in response to the 

evolving game environment. This adaptability is crucial in dynamic gaming 

scenarios, where understanding and anticipating opponent behavior can 

provide a substantial competitive advantage. Additionally, recognizing different 

player motivations and types, as highlighted by [25], further refines performance 

predictions by allowing for the customization of strategies that resonate with 

diverse player profiles. Addressing technical challenges such as latency, [26] 

categorize player actions based on their precision and impact, ensuring that 

strategic decisions are both timely and effective. Collectively, these 

methodologies underscore the multifaceted importance of predicting player 

performance in developing robust and adaptive gaming strategies. 

Predicting player performance in EA SPORTS FC 25 presents significant 

challenges due to the multitude of influencing attributes that must be 

considered. Player attributes encompass a wide range of factors, including 

technical skills, tactical awareness, cognitive abilities, and psychological traits, 

all of which interact in complex ways to determine individual and team 

performance. Research [23] emphasize that integrating diverse in-game data 

through EDA is essential for identifying underlying patterns and correlations 

among these attributes. However, the high dimensionality and interdependence 

of these variables complicate the modeling process, making it difficult to isolate 

the most influential factors accurately. Additionally, the dynamic nature of 

gameplay, where player performance can fluctuate based on real-time 

decisions and interactions, further exacerbates the complexity of prediction 

models [24]. 

Another significant challenge lies in the necessity for accurate and reliable 

predictive models that can effectively handle the complexity of in-game 

attributes. Developing such models requires robust statistical and machine 

learning techniques capable of capturing non-linear relationships and 

interactions between variables. Study [25] highlight that the predictive accuracy 

of models like linear regression and random forest regression depends on their 

ability to accommodate the intricate dynamics of player performance data. 

Moreover, [26] discuss the importance of addressing issues such as overfitting 
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and model generalization to ensure that predictions remain reliable across 

different game scenarios and player populations. Achieving this level of 

precision is critical for enhancing gaming strategies, as inaccurate predictions 

can lead to suboptimal decision-making and reduced competitive advantage. 

The primary objective of this study is to develop predictive models utilizing 

Linear Regression and Random Forest Regression techniques to forecast 

player performance in EA SPORTS FC 25. By harnessing these statistical and 

machine learning methodologies, the research aims to analyze the impact of 

various in-game attributes on individual player outcomes. Study [23] highlight 

the significance of EDA in identifying key performance indicators, which serves 

as a foundational step in building accurate predictive models. Implementing 

Linear Regression allows for the examination of linear relationships between 

player attributes and performance metrics, providing a baseline for 

understanding how each attribute contributes to overall effectiveness. 

Conversely, Random Forest Regression offers a more complex, non-linear 

approach, capable of capturing intricate interactions among multiple attributes, 

thereby enhancing the robustness of performance predictions. 

Furthermore, this study seeks to compare the effectiveness of Linear 

Regression and Random Forest Regression models in predicting player 

performance based on in-game attributes. By evaluating these models against 

standardized performance metrics such as Mean Absolute Error (MAE), Root 

Mean Squared Error (RMSE), and the Coefficient of Determination (R²), the 

research aims to determine which approach offers superior predictive accuracy 

and reliability. Research [24] emphasize the importance of model selection in 

handling complex data structures, suggesting that ensemble methods like 

Random Forest may outperform traditional regression techniques in scenarios 

with high attribute interdependence. Through this comparative analysis, the 

study intends to provide actionable insights for players and team managers in 

EA SPORTS FC 25, enabling them to optimize team compositions and strategic 

decisions based on data-driven performance forecasts. 

Literature Review 

Player Performance Metrics in Gaming 

In sports simulation games, measuring player performance is a multifaceted 

process that involves a combination of statistical analyses, machine learning 

techniques, and context-based evaluations. These methods collectively offer a 

comprehensive understanding of how individual players contribute to team 

success, both in virtual environments and real-life simulations. A significant 

component of this measurement is the use of advanced statistical metrics, 

which provide detailed insights into player capabilities. The EA Sports Player 

Performance Index, for example, exemplifies this approach by collaborating 

with professional leagues and academic institutions to develop a rating system 

that evaluates players based on key performance indicators such as goals, 

assists, and defensive actions [27]. This index reflects the way simulation 

games can mimic real-world performance metrics, enabling players to engage 

more deeply with the game by understanding the factors contributing to player 

impact. 

In addition to these traditional metrics, machine learning and data analytics have 

transformed player performance assessments by introducing more dynamic 
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and adaptable evaluations. Techniques like Deep Reinforcement Learning 

(DRL) have been applied to analyze player actions in sports such as ice hockey, 

providing insights into individual performance by accounting for the context of 

each play [28]. This method facilitates a more nuanced understanding of player 

actions, incorporating situational factors that affect decision-making and 

execution. Moreover, qualitative assessments add another layer of complexity, 

as they capture how factors like gaming experience and sports knowledge 

influence performance [29]. These insights underscore the need for a holistic 

approach to measuring player performance, one that combines quantitative 

metrics with a consideration of player behavior and context. 

Overall rating is a crucial key performance indicator (KPI) in sports simulation 

games, offering a composite measure of a player's effectiveness and overall 

contribution to their team. By synthesizing a range of performance statistics into 

a single score, overall ratings enable quick assessments of both individual and 

team capabilities, which are essential for strategic decision-making. Traditional 

performance metrics, such as goals scored in soccer or points and rebounds in 

basketball, often serve as foundational elements in overall rating systems. 

These metrics are complemented by advanced measures like Player Efficiency 

Rating (PER) and Wins Above Replacement (WAR), which provide a more 

comprehensive view of a player’s impact [30]. These metrics facilitate player 

comparisons across different positions, capturing a holistic view of their 

contributions [31]. 

Machine learning further enhances the development of overall ratings by 

incorporating complex data patterns and context-specific variables. For 

instance, DRL techniques have been proposed to model player actions and their 

contributions to outcomes in sports like soccer and basketball, taking into 

account the state of the game and player roles within team dynamics [32]. This 

approach enables a more accurate representation of a player's effectiveness, 

as it considers not only raw statistics but also the contextual elements of 

gameplay. Additionally, qualitative aspects such as decision-making and 

leadership qualities are increasingly factored into overall ratings, recognizing 

their role in shaping performance [33]. For example, the context-aware cricket 

player performance metric (CAMP) captures the situational impact of player 

actions, underscoring the importance of context in evaluating overall 

contributions [34]. 

Overall ratings are not limited to individual assessments but are also 

instrumental in shaping team strategies. Coaches and managers rely on these 

ratings to make informed decisions about player selection, game plans, and 

training focus. The ability to quantify a player's overall impact allows for better 

alignment between player strengths and tactical needs, ultimately enhancing 

team cohesion and performance. This strategic application highlights the 

importance of overall ratings as a KPI in sports simulation games, as they 

directly influence both gameplay and team dynamics [35]. In summary, overall 

ratings integrate statistical metrics, machine learning, and qualitative 

assessments to provide a thorough evaluation of player performance, offering 

a powerful tool for both individual players and team management. 

Predictive Modeling in Gaming Analytics 

The application of machine learning (ML) in gaming analytics has gained 
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substantial traction as researchers and game developers seek to understand 

and predict player performance through sophisticated algorithms. ML models 

have shown remarkable potential in analyzing vast datasets, identifying 

patterns, and forecasting outcomes based on historical data. For instance, Liu 

et al. implemented a Random Forest model to predict player performance in 

eSports. This demonstrates that ML techniques can outperform traditional 

statistical methods by effectively capturing non-linear relationships between 

variables [36]. Similarly, Morales-García et al. applied EDA combined with 

supervised learning models to identify key performance indicators in League of 

Legends, one of the most popular multiplayer online games, highlighting the 

ability of ML to enhance the understanding of complex player interactions and 

gameplay strategies [23]. 

Furthermore, deep learning has been instrumental in pushing the boundaries of 

gaming analytics. Yanai et al. utilized Deep Reinforcement Learning (DRL) to 

model the decision-making process in soccer simulation games, providing 

insights into player effectiveness based on situational contexts, such as the 

positioning and actions of opponents [32]. This capability underscores the 

versatility of ML models in adapting to dynamic game environments, enabling 

the development of more accurate and context-aware predictive tools. Through 

these models, researchers can dissect the intricate factors contributing to player 

success, supporting the creation of training tools and in-game guidance 

systems that optimize player skills. The versatility of ML in handling diverse 

datasets makes it a powerful instrument in gaming analytics, capable of 

capturing the intricate and multi-dimensional nature of player performance. 

Statistical models have long been essential in sports analytics, providing a 

systematic approach to quantifying and interpreting player attributes, which are 

crucial for performance evaluation and strategic decision-making. These 

models are particularly effective in identifying relationships between player 

attributes and performance metrics. For example, Kozina and Seryi employed 

factor analysis to assess volleyball player readiness, identifying physical and 

psychological attributes as vital components influencing player performance 

[37]. This analytical approach demonstrates how statistical models can isolate 

specific characteristics that contribute to success, enabling coaches to create 

targeted training regimens that align with player strengths and weaknesses. 

In addition to physical attributes, statistical models can also account for 

cognitive and situational factors that influence player performance. Persson et 

al. applied regression techniques in ice hockey to predict player effectiveness, 

showcasing how detailed statistical analyses can inform player evaluations and 

team strategies based on game data [38]. Lermakov’s work in volleyball further 

illustrates the application of linear regression models to optimize gameplay 

strategies, underscoring the practical relevance of statistical models in real-time 

decision-making and game planning [39]. These models enable a nuanced 

understanding of how specific attributes, such as reaction time and positional 

awareness, impact player outcomes, thus enhancing the strategic depth of team 

sports analytics. 

Linear Regression in Performance Prediction 

Linear regression is a fundamental statistical technique that models the 

relationship between a dependent variable and one or more independent 
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variables, assuming this relationship is linear. It provides a simple yet effective 

approach for predicting outcomes by identifying the best-fit line through the data 

points, which minimizes the sum of squared errors. This interpretability makes 

linear regression a widely used tool in fields as diverse as economics, medicine, 

and social sciences [40]. The method can be represented by the equation Y=β0
+β1X+ϵ where Y is the dependent variable, X represents the independent 

variable, β0 is the intercept, β1 is the slope, and ϵ denotes the error term. The 

coefficient β1offers insights into how much the dependent variable changes for 

each one-unit increase in the independent variable, revealing the strength and 

direction of the relationship [41]. 

The applications of linear regression extend across various disciplines, 

underscoring its versatility. In healthcare, it is utilized to analyze relationships 

between risk factors and patient outcomes, as seen in studies assessing the 

impact of continuous glucose monitoring on metabolic control in diabetes [42], 

[43]. Environmental science also employs linear regression to model climatic 

changes, such as predicting surface wind components based on mid-

tropospheric climate fields, thereby aiding in understanding complex weather 

patterns [44]. Linear regression serves as the foundation for more advanced 

statistical methods, such as generalized linear models (GLMs), which extend 

the applicability of the basic model to a broader range of data distributions and 

link functions, increasing its utility in complex datasets [45]. 

Linear regression has also evolved to tackle complex data structures, leading 

to the development of variants such as functional linear regression, where 

predictors can take the form of functions rather than single variables. This is 

especially useful in fields like time series analysis, where data points are 

observed over time, and traditional linear regression may fail to capture 

underlying patterns accurately [41], [46]. Additionally, linear regression models 

are often integrated with machine learning techniques to improve predictive 

accuracy in high-dimensional datasets, where traditional methods may fall short 

due to the challenges of data sparsity and overfitting [47]. In summary, linear 

regression remains a cornerstone of predictive modeling, supporting both 

foundational and cutting-edge analyses across a wide range of applications. 

Random Forest Regression in Performance Prediction 

The Random Forest algorithm, introduced by Breiman in 2001, stands as a 

highly effective ensemble learning technique that combines the strengths of 

multiple decision trees to enhance predictive performance. In Random Forest, 

each tree is built using a random subset of both data samples and features, a 

process known as bootstrap aggregating or bagging. This method promotes 

diversity among individual trees, reducing the likelihood of overfitting while 

preserving the model's predictive accuracy [48], [49]. The algorithm then 

aggregates the predictions from all trees, typically by averaging in the case of 

regression tasks, to produce a final output. This ensemble approach not only 

boosts performance but also increases robustness, making it suitable for 

datasets with a high dimensionality or complex structure [50]. 

One of the primary advantages of Random Forest lies in its ability to handle a 

large number of predictor variables without requiring extensive feature 

selection. This quality is especially useful in domains where the number of 

features can exceed the number of observations, such as genomics and image 
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analysis. Additionally, Random Forest inherently provides a measure of feature 

importance by assessing each variable's contribution to the model’s predictive 

power. This is accomplished through techniques like the Mean Decrease 

Impurity (MDI) and Mean Decrease Accuracy (MDA), which calculate the 

importance of a feature based on how much it reduces impurity or affects model 

accuracy when permuted [51]. These capabilities make Random Forest an 

invaluable tool for applications requiring both accurate predictions and 

interpretability, such as clinical diagnosis, financial forecasting, and 

environmental risk assessment [52]. 

Beyond its predictive strength, Random Forest is known for its interpretability 

and ease of use. Unlike some machine learning models that demand extensive 

parameter tuning, Random Forest generally requires only a few 

hyperparameters—primarily the number of trees and the maximum depth—to 

perform effectively. The algorithm's ability to deliver reliable predictions with 

minimal tuning makes it an attractive option for a wide range of practical 

applications, from predicting health outcomes and environmental impacts to 

financial market trends [53]. Moreover, its resistance to overfitting, due to 

averaging multiple trees, further reinforces its utility in scenarios with noisy or 

imbalanced data, where other models may struggle to generalize effectively 

[54]. 

Comparative Studies Between Linear and Non-Linear Models 

Research comparing linear models with ensemble-based approaches highlights 

the trade-offs in terms of performance, accuracy, and interpretability. Ensemble 

methods, which aggregate multiple models to enhance predictive capability, are 

frequently reported to outperform single models, including linear regression, in 

various domains. Ensemble learning, specifically bagging combined with 

decision trees, achieved superior accuracy in predicting heart disease 

compared to individual models, underscoring the robust predictive power of 

ensemble techniques in healthcare applications. Similarly, Kew and Mitchell 

observed that both greedy and linear ensemble methods excelled in quantitative 

structure-activity relationship (QSAR) regression tasks, outperforming 

standalone linear approaches and confirming the adaptability of ensemble 

models in complex regression problems [55]. Additionally, Sagi and Rokach 

emphasize that ensemble approaches, like Random Forest and Gradient 

Boosting, are state-of-the-art in predictive tasks due to their ability to improve 

accuracy by capturing complex patterns within data [56]. 

However, despite their strengths, ensemble methods only guarantee superiority 

across some contexts. Jiang et al. have shown that linear models can 

sometimes be preferable, especially when dataset complexity and variability are 

minimal, indicating that the suitability of ensemble methods is highly contingent 

on specific data characteristics and task requirements [57]. This observation 

aligns with Zhao and Hasegawa's study, which found that the effectiveness of 

ensemble methods, particularly those involving semi-feature sharing deep 

ensembles, depends heavily on the underlying architecture and data 

interactions [58]. Furthermore, in the realm of healthcare, ensemble methods 

provided better predictions in kidney function estimation compared to linear 

models, reinforcing the idea that while ensemble models can improve accuracy, 

their practical benefits are influenced by factors such as model architecture and 

domain-specific considerations. 
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In addition to performance differences, model interpretability is a critical factor 

in choosing between linear and ensemble models. While ensemble methods 

typically excel in accuracy, their complexity often reduces their interpretability. 

For example, Wang and Davidson found that while ensemble methods like 

Random Forests enhanced prediction accuracy in clinical data analysis, the 

aggregation of multiple models obscured the interpretability of individual 

predictors, complicating their practical application [59]. In contrast, linear 

models, due to their simplicity, allow for clearer insights into feature 

relationships and their contributions to predictions, which is valuable in fields 

where understanding model decisions is paramount. Ahmed et al. also 

discussed the trade-off between accuracy and interpretability, noting that 

ensemble pruning techniques can enhance interpretability by reducing model 

complexity. Still, the interpretability of linear models remains inherently stronger 

[60]. Thus, while ensemble methods offer significant benefits in terms of 

accuracy, linear models retain an essential role in contexts where simplicity and 

interpretability are prioritized. 

Method 

The research method for this study consists of several steps to ensure a 

comprehensive and accurate analysis. The flowchart in figure 1 outlines the 

detailed steps of the research method. 

 

Figure 1 Research Method Flowchart 

Data Description 

This study utilizes a comprehensive dataset detailing attributes of players from 

EA SPORTS FC 25, focusing on in-game performance indicators to evaluate 

player capabilities and predictive modeling accuracy. The dataset comprises 

17,737 entries, each representing a unique player with extensive information on 

physical, technical, and mental attributes. These attributes are essential in 

sports simulation games for predicting player performance, constructing 

effective gameplay strategies, and enhancing user engagement. The dataset, 

originally sourced from the EA SPORTS website, was scraped and includes 

over 50 columns, capturing diverse aspects of player statistics such as overall 

rating (OVR), acceleration, shooting ability, passing skills, and defensive 

prowess, alongside demographic details like age, nationality, and team 

affiliation. 

Data Preprocessing 

The dataset used for this analysis contained various attributes with missing 

values that required preprocessing to ensure robust modeling. Missing data for 

attributes like 'Alternative positions' and 'play style' were replaced with empty 

strings, recognizing that not all players possess secondary positions or 
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designated play styles. For goalkeeper-specific attributes such as 'GK Diving' 

and 'GK Reflexes,' missing values were set to zero, reflecting their inapplicability 

to outfield players. This imputation approach preserved the integrity of the 

dataset without discarding essential data, thereby ensuring comprehensive 

representation of player attributes. As a result, all missing values were resolved, 

preparing the dataset for subsequent processing steps. 

Categorical variables in the dataset required transformation into numerical 

formats suitable for predictive modeling. The 'Preferred foot' attribute, indicating 

whether a player is left- or right-footed, was encoded as binary values (0 for 

'Left' and 1 for 'Right'). The 'Position' attribute was transformed using one-hot 

encoding to create binary indicators for each unique player position. 

Additionally, 'Alternative positions' were processed to generate binary columns 

indicating whether a player could operate in different roles on the field. For the 

'play style' attribute, a multi-label encoding approach was employed, creating 

binary indicators for each unique style by splitting and parsing multiple play 

styles. These encoding techniques ensured that categorical data was 

accurately represented in the model without losing any critical information about 

player attributes. 

Feature scaling was applied to ensure numerical attributes were on a 

comparable scale, enhancing the performance of machine learning models, 

especially for distance-based algorithms. Standardization was performed using 

the StandardScaler, transforming features to have a mean of zero and a 

standard deviation of one. This approach was selected to handle the varied 

distribution of features like 'PAC,' 'SHO,' and 'DEF,' which represent pace, 

shooting ability, and defense, respectively. Standardizing features mitigates 

issues related to different magnitudes and units, improving model convergence 

and prediction accuracy. The scaled features allowed for uniformity and 

facilitated the training of linear and non-linear models effectively. 

The dataset was divided into training and testing subsets to evaluate model 

performance accurately. An 80/20 split ratio was employed, with 80% of the 

data used for training and the remaining 20% reserved for testing. The target 

variable, 'OVR' (Overall Rating), representing player performance, was 

separated from the feature set. Columns irrelevant to predictive modeling, such 

as 'Name,' 'Rank,' and 'Team,' were excluded from the features to avoid 

introducing noise. The final dataset comprised 14,189 samples for training and 

3,548 samples for testing, ensuring an appropriate balance between model 

training and evaluation. This splitting strategy facilitated unbiased model 

validation and assessment of generalizability across unseen data. 

Exploratory Data Analysis (EDA) 

Descriptive statistics provided an overview of key player attributes within the 

dataset, offering insight into their central tendencies and dispersion. The mean, 

median, mode, and standard deviation were computed for essential attributes, 

including physical (PAC, PHY), skill-based (SHO, PAS, DRI), and gameplay-

specific features (OVR). For example, the mean overall rating (OVR) of players 

was found to be approximately 66.80, with a standard deviation of 7.03, 

indicating a moderate spread around the mean. The median OVR, slightly lower 

at 67, and the consistent mode value demonstrated that the dataset contained 

a diverse range of player abilities, yet remained centered around typical mid-
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tier ratings. Key performance indicators, such as 'PAC' and 'SHO,' exhibited a 

normalized distribution following feature scaling, ensuring that comparisons 

were possible without introducing bias due to attribute magnitude. 

The standard deviation values for each feature further highlighted the variance 

across attributes, with some, such as 'Skill Moves' and 'Weak Foot,' exhibiting 

a narrow spread, indicating consistency across most players, while others, like 

'PAC' and 'SHO,' showed greater variance, signifying differing abilities among 

players. Analyzing such statistics informed the selection of attributes for 

predictive modeling and highlighted the necessity of further refining the dataset 

through correlation analysis and outlier detection to better understand 

relationships and variations in player data. 

Correlation analysis provided a deeper understanding of the relationships 

between player attributes by calculating the correlation coefficients among 

them. A heatmap was generated to visualize these correlations, revealing both 

strong positive and negative associations. Attributes such as 'Short Passing' 

and 'Vision' demonstrated a high positive correlation, suggesting that players 

skilled in one tend to excel in the other. Conversely, minimal or negative 

correlations between attributes like 'PAC' (pace) and 'DEF' (defense) 

highlighted the divergence between offensive and defensive skills in players. 

This analysis was crucial for identifying potential multicollinearity issues within 

the data, which could impact the accuracy and interpretability of predictive 

models. 

By examining the correlation matrix, it became possible to identify clusters of 

related attributes, indicating potential feature groupings for model inputs. 

Attributes with strong positive correlations often contributed to similar gameplay 

outcomes and were therefore considered together in subsequent modeling 

efforts. This step ensured that critical relationships were accounted for without 

redundancy, ultimately improving model training and evaluation accuracy. 

Histograms and box plots were generated to visualize the distribution of key 

player attributes, shown in figure 2 and figure 3, providing insights into the 

shape, spread, and skewness of data points. Most attributes displayed a near-

normal distribution after standardization, with peaks around the mean and 

gradual declines towards the tails. For example, attributes such as 'DRI' 

(dribbling) and 'SHO' (shooting) exhibited distributions that highlighted player 

specialization, with a majority clustered around average values but with 

noticeable outliers representing top-tier players. Box plots further emphasized 

this, showcasing the range, quartiles, and presence of outliers for each attribute. 
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Figure 2 Histogram of DRI and SHO Attributes 

These plots facilitated a better understanding of attribute distributions and 

enabled the identification of extreme values that could influence model 

performance. For attributes with significant skewness or outlier influence, 

adjustments such as transformation or removal were considered during 

preprocessing to ensure a balanced representation of player capabilities. 

Outlier detection was performed using the Interquartile Range (IQR) method 

(figure 3), identifying data points that fell outside 1.5 times the IQR from the 

lower and upper quartiles. Several attributes, such as 'PAC' and 'SHO,' 

exhibited a notable number of outliers, representing players with extreme 

performance metrics. While some outliers corresponded to genuine top-

performing players, others were more indicative of noise or anomalies in the 

data collection process. The decision to retain or remove these outliers was 

guided by their relevance to the predictive modeling goals, with the aim of 

maintaining the integrity and representativeness of the dataset. 

  

Figure 3 Box Plot of PAC and SHO Attributes 

Outliers that distorted overall attribute distributions were either removed or 

capped, ensuring that they did not disproportionately impact model training. This 

process was critical for enhancing model robustness, reducing variance, and 

improving generalization capabilities when applied to unseen data. Overall, 

outlier detection and treatment contributed to a cleaner and more accurate 

dataset for predictive analysis. 
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Model Development 

Linear regression is a widely used statistical method that models the linear 

relationship between a dependent variable and one or more independent 

variables. In developing this model, key assumptions were verified, including 

linearity, homoscedasticity, and normality of residuals. Linearity ensures a 

straight-line relationship between predictor variables and the target, while 

homoscedasticity requires constant variance of residuals across all levels of the 

independent variables. The normality of residuals was assessed using visual 

plots and statistical tests to confirm the appropriateness of the linear model. 

Data splitting into training (80%) and testing (20%) sets was performed, and the 

model was trained using Ordinary Least Squares (OLS). Evaluation metrics, 

including Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and 

R² Score, provided insight into the model's predictive capabilities on unseen 

data, with an R² score of 0.92 indicating strong model fit. 

The Random Forest Regression model, an ensemble learning method, was 

developed to capture non-linear relationships in the data. This approach 

combines predictions from multiple decision trees to improve accuracy and 

robustness. Key hyperparameters, including the number of trees (n_estimators 

= 100) and tree depth, were selected to optimize performance. The model was 

trained using an 80/20 data split, similar to the linear regression approach, 

ensuring a consistent comparison. Random Forest's ability to handle high-

dimensional data and provide feature importance metrics made it particularly 

useful for evaluating player attributes in EA SPORTS FC 25. Performance 

evaluation metrics indicated superior predictive accuracy, with an R² score of 

0.96, lower MAE, and RMSE compared to the linear regression model, 

demonstrating its effectiveness in capturing complex player dynamics. 

Hyperparameter tuning was conducted to optimize model performance using 

Grid Search and Random Search techniques. For the linear regression model, 

limited hyperparameter tuning was necessary due to its straightforward nature. 

However, for the Random Forest model, hyperparameters such as the number 

of trees, maximum depth, and minimum samples per leaf were tuned to balance 

bias-variance trade-offs and minimize prediction errors. Grid Search provided 

an exhaustive approach to evaluating combinations of hyperparameters, while 

Random Search offered efficiency in exploring a wider range of values within a 

predefined space. This comprehensive tuning process ensured that both 

models achieved their best possible performance, with a focus on maximizing 

predictive accuracy and minimizing errors in player performance predictions. 

Model Evaluation 

To evaluate the predictive performance of the developed models, key metrics 

were employed, including Mean Absolute Error (MAE), Root Mean Squared 

Error (RMSE), and the Coefficient of Determination (R²). MAE measures the 

average magnitude of absolute errors between predicted and actual values, 

providing an intuitive sense of prediction accuracy without regard to direction. 

RMSE, calculated as the square root of the mean squared errors, gives greater 

weight to larger errors, making it sensitive to outliers and useful for assessing 

model precision (Tripepi et al., 2011). The Coefficient of Determination (R²) 

quantifies the proportion of variance in the dependent variable explained by the 

model, indicating the overall fit. For the linear regression model, the evaluation 
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yielded a MAE of 1.28, RMSE of 1.66, and R² score of 0.92, demonstrating a 

strong linear relationship between the predictor variables and player 

performance. However, the Random Forest regression model outperformed 

linear regression, achieving a lower MAE of 0.88, RMSE of 1.16, and a higher 

R² score of 0.96, highlighting its effectiveness in capturing complex, non-linear 

patterns within the data. 

Cross-validation was conducted using a K-Fold Cross-Validation approach to 

ensure model robustness and mitigate overfitting. The dataset was partitioned 

into k subsets (commonly 5 or 10), with the model trained iteratively on k-1 

subsets and validated on the remaining subset. This process was repeated k 

times, allowing each subset to serve as a validation set, and the average 

performance across all iterations was computed. The K-Fold approach offers a 

comprehensive assessment of model stability and predictive capabilities across 

different data splits (James et al., 2013). For the Random Forest regression 

model, cross-validation demonstrated consistent accuracy, indicating that the 

model generalized well to unseen data. The linear regression model exhibited 

slightly greater variability across folds, underscoring the importance of model 

complexity in accurately predicting player performance attributes. This 

evaluation confirmed the utility of cross-validation as a reliable method for 

validating predictive models. 

Result and Discussion 

Exploratory Data Analysis Findings   

Exploratory data analysis (EDA) revealed key descriptive statistics for the 

dataset used to predict player performance in EA SPORTS FC 25. Attributes 

such as Pace (PAC), Shooting (SHO), Passing (PAS), Dribbling (DRI), Defense 

(DEF), and Physicality (PHY) were analyzed to understand their distribution and 

central tendency measures. The mean values of these attributes were 

normalized around zero due to preprocessing, with standard deviations close to 

1. Notably, the median values showed variation in player skills, with a median 

pace score of 0.07 and a shooting score of 0.15, indicating skewness in certain 

attributes where outliers or a concentration of high values existed. Additionally, 

metrics like maximum and minimum values highlighted the range of player 

performance ratings, with the Overall Rating (OVR) ranging from 47 to 91, 

representing a broad spectrum of player abilities. These statistics underscore 

the diversity present in the dataset, capturing varying levels of skill among the 

players analyzed. 

Beyond basic descriptive statistics, measures of variability such as the 

interquartile range (IQR) provided further insights into the distribution spread. 

For example, Defensive Awareness (Def Awareness) and Passing attributes 

exhibited wider IQRs, suggesting significant performance differences among 

players in these areas. Median values for attributes like Finishing (0.22) and 

Ball Control (0.24) reflected expected concentrations, demonstrating consistent 

proficiency levels in certain key player skills. The standardized deviations 

across all attributes confirmed the data's normalization during preprocessing, 

ensuring comparability across different player metrics. 

The correlation analysis provided deeper insights into the relationships among 

player attributes, with a heatmap used to visualize the strength of these 

associations (Figure 4). Strong positive correlations were observed between 
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attributes such as Short Passing and Long Passing, indicating that players 

proficient in one type of passing often exhibited competence in the other. 

Similarly, strong inter-relationships were noted among dribbling-related skills, 

such as Dribbling, Ball Control, and Agility, reflecting how these capabilities 

collectively impact a player’s on-field maneuverability. Conversely, some 

attributes displayed weak correlations, such as Defensive attributes with 

Shooting metrics, emphasizing distinct specialization in player roles within the 

game.  

 

Figure 4 Correlation Heatmap 

The heatmap highlighted clusters of correlated features, suggesting potential 

multicollinearity that could influence model predictions. Such correlations 

necessitated careful consideration during feature selection and modeling 

phases to avoid redundancy and enhance model interpretability. Furthermore, 

examining the correlations between Overall Rating (OVR) and other attributes 

revealed that attributes such as Pace (PAC) and Dribbling (DRI) maintained 

moderate positive correlations with player ratings, underscoring their impact on 

player performance evaluations within the game. These insights from 

correlation analysis informed the feature engineering and model optimization 

processes, ensuring that significant predictive attributes were prioritized for both 

the linear regression and random forest regression models. 
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Linear Regression Model Results   

The linear regression model was evaluated based on key performance metrics, 

including Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and 

the Coefficient of Determination (R²). The model achieved an MAE of 1.28, 

indicating that the average deviation between predicted and actual values was 

approximately 1.28 rating points. The RMSE was calculated to be 1.66, 

suggesting a moderate level of error dispersion. The R² score of 0.92 implied 

that 92% of the variance in the player performance rating (OVR) could be 

explained by the model’s input attributes. This strong R² value demonstrated 

the linear model's overall effectiveness, although limitations in capturing 

nonlinear relationships were acknowledged. 

The coefficients of the linear regression model provided insights into the 

relationship between individual attributes and player performance ratings. 

Attributes such as Dribbling, Passing, and Shooting exhibited positive 

coefficients, indicating their strong influence on player ratings. Conversely, 

some defensive attributes showed weaker or even negative coefficients, 

reflecting their relatively lower contribution in predicting the overall performance 

metric in EA SPORTS FC 25. This analysis underscored the importance of 

offensive skills within the predictive model, aligning with expected player 

evaluation criteria. Residual analysis (Figure 5) depicted residuals against fitted 

values, demonstrating a non-random pattern and potential issues with linearity 

and homoscedasticity assumptions. The observed heteroscedasticity 

suggested that prediction errors were not constant across all values of the 

response variable, highlighting areas where model improvements were needed. 

 

Figure 5 Residual Analysis of Linear Regression 
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Random Forest Regression Model Results   

The random forest regression model exhibited superior predictive performance 

compared to the linear regression model. It achieved an MAE of 0.88, indicating 

a lower average error in predictions. The RMSE was 1.16, reflecting a tighter 

spread of errors, while the R² score of 0.96 demonstrated that the model 

captured 96% of the variance in player ratings. This performance highlighted 

the effectiveness of ensemble learning in capturing complex interactions and 

nonlinear relationships among the input attributes. The significant improvement 

over the linear model suggested that the random forest approach was better 

suited for modeling player performance in EA SPORTS FC 25. 

Analysis of feature importance revealed top 10 most important features in 

predicting player performance using the Random Forest model (Figure 6). The 

feature importance metric indicates each attribute's relative influence on the 

model's output, with higher values signifying greater impact. "Reactions" 

emerges as the most significant predictor by a substantial margin, contributing 

close to 0.7 in importance, suggesting that a player's reaction ability heavily 

influences their overall rating. Other important features include "Ball Control" 

and "DEF" (Defense), which also play notable roles in the model's predictions, 

though their importance is significantly lower than "Reactions." Additional 

attributes such as "DRI" (Dribbling), "Sliding Tackle," and "Standing Tackle" 

contribute moderately, emphasizing the importance of defensive and control 

skills in player performance. Lesser yet still relevant features like "Jumping," 

"Crossing," "Positioning," and "SHO" (Shooting) provide insights into secondary 

skills that also affect performance, though to a lesser extent. This distribution 

highlights the multidimensional nature of player ratings, where a combination of 

reaction time, control, and defensive skills predominantly determines 

performance outcomes. 

 

Figure 6 Top 10 Important Features in Random Forest 

The robustness of the random forest regression model was further evaluated 

through considerations of overfitting and generalization. Unlike linear 
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regression, which displayed potential overfitting issues in its residual 

distribution, the random forest model exhibited better generalization to unseen 

data. Its ensemble structure inherently reduced overfitting by averaging 

predictions across multiple decision trees, leading to more stable and reliable 

predictions. However, careful hyperparameter tuning, such as controlling the 

number of trees and tree depth, was necessary to optimize performance without 

sacrificing interpretability. This balance between predictive power and model 

complexity reinforced the utility of random forest regression for predicting player 

performance in dynamic gaming environments. 

Comparative Analysis   

The comparative analysis between the linear regression model and the random 

forest regression model highlighted significant differences in their predictive 

performance. Figure 7 illustrates a side-by-side comparison of the performance 

metrics—Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and 

R² Score—between the Linear Regression and Random Forest models. The 

Random Forest model outperformed Linear Regression across all metrics, 

demonstrating its superior predictive capabilities. Specifically, the Random 

Forest model achieved a lower MAE of 0.88 compared to 1.28 for Linear 

Regression, indicating a closer fit to the actual values. The RMSE for Random 

Forest was also lower at 1.16, reflecting reduced error dispersion relative to 

Linear Regression's RMSE of 1.66. Furthermore, the R² Score, which measures 

the proportion of variance explained, was higher for Random Forest at 0.96, 

compared to 0.92 for Linear Regression. These results highlight the Random 

Forest model’s ability to capture more complex, nonlinear patterns in the data, 

making it a more effective choice for predicting player performance in EA 

SPORTS FC 25. 

 

Figure 7 Comparison of Evaluation Metrics 

Despite its higher accuracy, the random forest regression model's complexity 

can pose challenges in terms of interpretability. In contrast, linear regression 

offers greater transparency in the form of easily interpretable coefficients, 

making it a valuable tool for understanding the contribution of individual 

attributes to player performance. This interpretability can be especially useful in 

scenarios where actionable insights are required for model-driven decision-

making. However, the linear regression model's primary weakness lies in its 
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limited ability to capture nonlinear interactions among attributes, leading to 

reduced predictive accuracy compared to the random forest model. The random 

forest's ability to model complex relationships and variable interactions allows 

for more accurate and robust predictions, making it particularly suited for high-

dimensional datasets with intricate patterns. However, the trade-off is a potential 

decrease in model interpretability due to its ensemble structure, which combines 

multiple decision trees. 

To assess the statistical significance of the performance differences observed 

between the two models, paired t-tests and non-parametric tests were 

conducted on the MAE and RMSE scores derived from repeated cross-

validation. The results confirmed that the improvements achieved by the 

random forest model were statistically significant at a 95% confidence level, 

indicating that the observed differences were not due to random variation. This 

further reinforced the robustness of the random forest model in accurately 

predicting player performance based on in-game attributes. Additionally, the 

tests validated that while both models showed strong predictive capabilities, the 

enhanced accuracy of the random forest model was unlikely to be attributable 

to chance, underscoring its effectiveness in this application. 

Interpretation of Findings   

The analysis revealed that key attributes such as Ball Control, Dribbling, 

Passing, and Pace significantly influenced player performance predictions in EA 

SPORTS FC 25. Both linear regression and random forest regression models 

consistently highlighted these attributes as primary predictors, albeit with 

varying degrees of emphasis. Ball Control and Dribbling, in particular, exhibited 

strong correlations with the overall player rating (OVR), indicating their critical 

role in simulating player effectiveness and agility on the virtual field. The random 

forest model, through its feature importance analysis, further emphasized 

complex interactions between these attributes, such as the synergy between 

Pace and Dribbling, which could enhance a player's ability to navigate the game 

environment. This underlines how advanced regression techniques can identify 

and prioritize attributes that might otherwise be overshadowed in a purely linear 

analysis. 

For gamers, these findings offer actionable insights to enhance their gameplay 

strategies. By understanding the key attributes that most strongly impact player 

performance, players can prioritize building teams that maximize Ball Control, 

Dribbling, and other influential metrics. This can lead to more effective in-game 

decision-making, allowing for better team composition and tactics tailored to 

individual player strengths. Focusing on boosting these attributes through 

training modes or acquiring in-game items that enhance specific skills can also 

improve overall team performance, making it possible for gamers to achieve 

more consistent victories in both competitive and casual settings. 

For game developers, these findings provide critical feedback for refining game 

mechanics and player ratings in future iterations of EA SPORTS FC. 

Understanding the impact of attributes like Ball Control and Dribbling on player 

performance can guide adjustments to ensure that player ratings more 

accurately reflect their virtual influence. Developers can also leverage these 

insights to balance gameplay dynamics, creating more realistic and competitive 

interactions among players by fine-tuning how attributes are weighted and 
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interact with each other. Such adjustments have the potential to enhance player 

satisfaction and engagement, fostering a more immersive and strategically rich 

gaming experience. 

Conclusion 

This study aimed to predict player performance in EA SPORTS FC 25 using in-

game attributes through the comparative application of linear regression and 

random forest regression models. The primary objectives included evaluating 

the predictive power of these models and identifying key player attributes 

influencing overall ratings. Data preprocessing and exploratory data analysis 

guided the model development, and various metrics such as Mean Absolute 

Error (MAE), Root Mean Squared Error (RMSE), and R² were used for 

evaluation. The results demonstrated that the random forest regression model 

consistently outperformed linear regression, achieving lower MAE and RMSE 

values and a higher R² score. This confirmed the effectiveness of ensemble 

methods in capturing complex relationships within the data compared to 

traditional linear models. 

The research contributes to the growing field of gaming analytics by enhancing 

the understanding of player performance prediction within a sports simulation 

context. It offers a comprehensive modeling framework that integrates data-

driven insights, potentially aiding in the development of more immersive and 

strategically enriched gameplay experiences. Additionally, the comparative 

approach sheds light on the practical advantages and limitations of different 

predictive models, providing a foundation for further studies in gaming and other 

domains where performance prediction is relevant. This work lays the 

groundwork for incorporating advanced analytics to refine game mechanics and 

player ratings, ultimately contributing to both academic literature and industry 

practices. 

Certain limitations should be acknowledged. The dataset used, while extensive, 

was constrained to a specific sample size and limited to player attributes from 

EA SPORTS FC 25. This may have restricted the generalizability of findings to 

broader contexts or different game editions. Moreover, the random forest model, 

despite its superior performance, posed potential risks of overfitting due to the 

complexity and number of trees involved. Addressing these constraints through 

more diverse data and careful model tuning could enhance predictive reliability 

and applicability. 

Future studies could benefit from incorporating a more diverse range of player 

data, including historical performance metrics, different game editions, and 

external variables. Exploring additional algorithms, such as neural networks, 

could further improve prediction accuracy and capture non-linear interactions 

more effectively. Position-specific models and dynamic analyses of player 

attributes over time could provide a more granular understanding of player 

development and in-game behavior, enhancing both gameplay strategy and 

predictive modeling in sports simulation games. 
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