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ABSTRACT

This paper investigates the potential of gait-based authentication for securing virtual
environments, specifically within the Metaverse. With the growing need for reliable
and secure identity verification in virtual spaces, traditional authentication methods,
such as passwords or PINs, have proven insufficient. In contrast, biometric
authentication systems, including gait analysis, provide a more secure and user-
friendly alternative by leveraging unique physiological and behavioral traits for identity
verification. This research applies machine learning algorithms —Random Forest and
Support Vector Machine (SVM)—to gait data for distinguishing between authentic
users and imposters. The dataset consists of 1,000 simulated gait samples with 16
features, such as stride length, step frequency, joint angles, and ground reaction
forces (GRF). After performing exploratory data analysis (EDA), including feature
distribution visualization and correlation analysis, two models were trained on the
data. The Random Forest model outperformed the SVM model, achieving an
accuracy of 56% and a recall of 76%, indicating its effectiveness in identifying
authentic users. Despite the promising results, both models showed only marginal
improvement over random guessing, highlighting the need for further optimization.
This study contributes to the growing body of research on gait-based biometric
systems by demonstrating their potential as a viable method for identity verification in
virtual environments. It also identifies the most important gait features, such as step
frequency, cadence variability, and knee joint angle, that significantly contribute to the
classification process. Future research should explore advanced deep learning
techniques and the integration of multimodal biometric systems to enhance the
performance and reliability of gait-based authentication.

Keywords Gait-Based Authentication, Metaverse Security, Machine Learning,
Random Forest, Biometric Systems

INTRODUCTION

The Metaverse is rapidly evolving into a digital frontier that fosters virtual
interactions across various sectors, offering immersive user experiences while
simultaneously raising significant concerns about security and identity
verification. As the virtual world grows, ensuring that users can interact securely
becomes a critical challenge. Biometric authentication systems, particularly
those leveraging gait analysis, are increasingly seen as essential tools to
address these concerns. By providing a means of verifying identity through
unique behavioral characteristics, gait analysis offers a promising solution to
safeguard interactions within virtual environments.
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Biometric systems utilize individual physiological and behavioral traits, such as
fingerprints, facial recognition, and gait patterns, to authenticate identity. These
systems offer a more secure alternative to traditional authentication methods
like passwords, which are becoming increasingly inadequate in protecting
digital interactions [1]. Gait analysis, which evaluates a person's walking
pattern, stands out as a particularly reliable biometric marker in the Metaverse.
Its non-intrusive nature and the difficulty in replicating a person’s walking style
make it an attractive option for ensuring genuine interactions in virtual spaces
[2].

To further enhance security, advancements in biometric technologies, such as
cancelable biometrics, provide additional privacy protection by masking
biometric traits. This ensures that even in the event of data breaches,
individuals’ identities remain secure [3], [4]. Combining multiple biometric traits
in multi-modal systems also helps reduce error rates in identity verification,
making it more difficult for attackers to spoof or bypass the system [5]. As the
Metaverse expands, the integration of these sophisticated biometric systems
into existing security frameworks will be vital to maintaining both privacy and
trust in virtual environments.

The primary objective of this research is to explore the use of gait-based
authentication systems powered by machine learning algorithms, aiming to
improve user security within the Metaverse. As the virtual world becomes more
immersive and integral to daily life, ensuring secure and seamless user
interactions is paramount. By leveraging gait analysis, which examines unique
walking patterns, this study seeks to validate its potential as a reliable biometric
tool for identity verification in virtual environments.

To achieve this, the research goal is to optimize the authentication accuracy of
gait-based systems by applying Random Forest and Support Vector Machine
(SVM) algorithms. These two machine learning algorithms are well-suited for
classification tasks, with Random Forest providing a robust ensemble approach
and SVM offering precision in identifying patterns within data. The combination
of these models aims to enhance the overall effectiveness of gait recognition
for user authentication in the Metaverse, reducing the risk of identity spoofing
or unauthorized access.

The significance of this research lies in demonstrating how gait analysis can
serve as a dependable biometric identifier within the Metaverse. As virtual
spaces expand and require secure user management, gait-based
authentication presents a non-intrusive, difficult-to-replicate method for verifying
identities. By showcasing its potential through machine learning techniques, this
study highlights the value of gait as a reliable, scalable solution for biometric
security in the growing digital frontier.

Literature Review
Overview Of Biometric Authentication

Biometric authentication has become an essential security mechanism in virtual
environments due to its ability to utilize unique physiological and behavioral
traits to verify an individual’s identity. Traditional authentication methods, such
as passwords or PINs, often fall short in providing the level of security required
for sensitive interactions within virtual spaces. This is because these methods
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are prone to being easily guessed, stolen, or shared. In contrast, biometric
systems provide more secure alternatives by using non-transferable, difficult-
to-forge identifiers, such as facial features, fingerprints, or iris patterns. The
distinctiveness of these traits ensures that only the person to whom they belong
can access the system, providing a higher level of security. Furthermore,
biometrics offer a user-friendly experience since they do not require the user to
remember passwords or carry additional tokens. Instead, these systems
authenticate identity based on traits that are inherently present in the individual,
making them more convenient and efficient [6].

Among the various biometric methods, face recognition is one of the most
widely used and highly effective techniques in virtual environments. It leverages
the unique structure and features of an individual’s face, such as the distance
between eyes, nose shape, and jawline, to accurately identify or authenticate a
person. This method is particularly advantageous in virtual settings due to its
contactless nature, allowing for quick and seamless authentication. For
instance, face recognition systems are increasingly integrated into smart
devices, security access systems, and online platforms, enabling users to
authenticate themselves swiftly and securely. Recent advancements have
significantly enhanced face recognition capabilities, allowing these systems to
maintain high levels of accuracy even when users wear masks or other facial
coverings—common in many public settings. Deep learning techniques,
particularly those that utilize models like VGG16 combined with random Fourier
features, have improved the adaptability and robustness of face recognition
systems, ensuring they can operate effectively under various conditions [7], [8].

Another key biometric method is fingerprint scanning, which has been widely
adopted due to its high reliability and ease of use. Fingerprint recognition is
particularly common in security-sensitive applications such as Automated Teller
Machines (ATMs), mobile devices, and access control systems. This method’s
primary advantage lies in the distinctiveness of each individual’s fingerprint,
which remains unchanged throughout life. The integration of advanced image
processing techniques, such as Prewitt filtering for segmentation, has further
refined fingerprint recognition accuracy, enabling these systems to provide
highly reliable identity verification. Furthermore, the use of multimodal biometric
systems is gaining traction, as it combines several biometric methods, such as
face recognition, fingerprint scanning, and iris scanning, to improve the
accuracy and resilience of the authentication process. This approach helps
mitigate the weaknesses of single-modal systems by enhancing their overall
performance and reliability. In educational and security settings, the fusion of
these diverse modalities has been shown to significantly enhance the
authentication process, providing a more robust system that can adapt to
varying conditions [9], [10].

The continual advancements in sensor technology, image processing, and deep
learning have driven the development of these biometric systems, allowing them
to operate effectively in dynamic and contactless virtual environments. By
integrating deep learning algorithms, biometric systems can improve their ability
to process complex data from multiple modalities and continuously learn from
new inputs, increasing their accuracy over time. The evolution of multimodal
biometric systems has been particularly impactful, enabling more sophisticated
methods of identity verification that cater to the growing security needs of virtual

Limbong, et al., (2025) Int. J. Res. Metav. 250



International Journal Research on Metaverse

spaces. These systems offer greater resilience against attacks, such as
spoofing, and enhance the user experience by providing a seamless and
reliable method of authentication. In summary, the integration of biometric
authentication methods like face recognition and fingerprint scanning into virtual
environments significantly enhances security while addressing the limitations of
traditional methods, offering both increased protection and improved user
convenience [11].

Gait-Based Authentication

Gait-based authentication has emerged as a significant method for biometric
identification, leveraging an individual's unique walking patterns to verify their
identity. Its primary appeal lies in its non-intrusive nature, which allows for
identification from a distance without the need for direct interaction with the
subject. This characteristic makes it particularly valuable in both surveillance
and access control systems, offering a secure, seamless alternative to
traditional authentication methods like passwords or physical identification
cards. Gait-based systems are also less susceptible to spoofing or forgery, as
replicating an individual's gait is inherently difficult. This makes gait analysis an
attractive solution in modern security frameworks, where ensuring the privacy
and safety of users is crucial [12].

The application of gait for identification has expanded significantly due to
advancements in sensor technologies, machine learning techniques, and a
deeper understanding of human biomechanics. The use of inertial
measurement units (IMUs) for analyzing gait patterns in real-world settings is
one such advancement. These devices capture key temporal parameters that
are essential for accurate gait recognition, allowing systems to recognize
individuals based on their walking patterns even in dynamic, real-world
environments. Recent studies have shown that gait analysis can be applied in
various sectors beyond traditional security, such as healthcare. For instance,
gait abnormalities have been linked to psychological conditions, such as
depression, showcasing the broader applications of gait analysis in both health
monitoring and identity verification [13].

Furthermore, gait analysis has proven valuable in forensic contexts, where it
can be used to corroborate identities by comparing gait characteristics with
known patterns. This is particularly significant in criminal investigations, where
gait features can provide critical evidence to support or challenge the identity of
suspects [14], [15]. While gait analysis has traditionally been associated with
medical rehabilitation and patient monitoring, it is increasingly recognized as a
viable biometric authentication tool [16]. The ability to identify individuals by their
gait, especially in situations where facial features or fingerprints are obscured,
makes it a promising alternative for secure authentication systems. Ongoing
research and technological developments in this field will be crucial for refining
gait recognition methods, ensuring their accuracy and reliability in both security
and healthcare applications [17], [18].

Machine Learning in Biometric Systems

Machine learning algorithms play a vital role in improving the performance of
biometric authentication systems, helping to process complex biometric data
and ensuring secure identification. Among the various machine learning
algorithms, Random Forest and Support Vector Machine (SVM) are particularly
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well-suited for this purpose due to their robust classification capabilities and
ability to handle high-dimensional data. These algorithms enable the accurate
analysis of biometric features such as facial recognition, fingerprints, and gait
patterns, making them indispensable tools in modern biometric systems [19],
[20].

The Random Forest algorithm is an ensemble learning technique that builds
multiple decision trees based on random subsets of the training data. It then
aggregates the predictions from these individual trees, typically using majority
voting, to produce a final classification result. This method is particularly
effective in handling large datasets with many features, which is often the case
in biometric applications where multiple physiological traits are analyzed
simultaneously. A significant advantage of Random Forest is its ability to
mitigate overfitting, a common challenge in traditional decision tree models. By
averaging the results of many trees, it enhances generalization and improves
performance on unseen data [19]. In multimodal biometric systems, where
multiple biometric features are combined, Random Forest has been
successfully applied to analyze interactions among diverse biometric inputs,
such as facial features, fingerprints, and gait patterns [2]. Its robustness and
adaptability make it a popular choice for high-accuracy biometric systems.

The Support Vector Machine (SVM) is another powerful algorithm widely used
for classification tasks, particularly in scenarios where the data is high-
dimensional. SVM's primary objective is to find the optimal hyperplane that
separates data points belonging to different classes while maximizing the
margin between the closest points, known as support vectors. This ability to
identify an optimal separation boundary makes SVM highly effective for
biometric applications where distinguishing features need to be extracted from
complex data. In particular, SVM is highly effective in tasks like face recognition
and fingerprint classification, where the data is not always linearly separable.
The use of kernel functions enables SVM to handle non-linear relationships,
further enhancing its applicability in high-dimensional biometric data spaces
[21]. SVM is also resistant to overfitting, making it a reliable choice for extracting
relevant features from biometric data like fingerprints, iris patterns, and facial
images. Additionally, SVM can be combined with other machine learning
techniques to improve feature extraction and classification accuracy, thereby
enhancing the performance of biometric systems [22].

Both Random Forest and SVM have demonstrated their importance in
advancing biometric authentication systems, offering effective solutions for
securely verifying identities while maintaining high accuracy. These algorithms
help ensure that biometric systems are resilient to adversarial attacks and
capable of processing complex biometric data efficiently, making them essential
components of modern security frameworks [23]. As biometric technologies
continue to evolve, the integration of these machine learning techniques will
play a key role in enhancing the security, accuracy, and robustness of
authentication systems.

Method

The methodology employed in this study is systematically illustrated in figure 1.
The process begins with loading the gait dataset containing features (X) and
labels (y), followed by validating the dataset and handling any missing values.
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Once the dataset is confirmed to be valid, the features are standardized and the
data is split into training and testing sets. Next, a model is selected—either a
Random Forest or a Support Vector Machine (SVM) with an RBF kernel—and
trained accordingly. The trained model is then evaluated using performance
metrics such as accuracy, precision, recall, and F1-score. If the performance is
unsatisfactory, the model parameters are adjusted and retraining is conducted
iteratively until acceptable results are achieved. Finally, the trained models are
saved, and feature importance is computed to identify the contribution of each
feature to the model’s performance.

Load Gait Dataset D with Check if dataset is valid and | fnyalig-|  Clean or regenerate
> Invalic

E\:ﬁd 1_‘
1

Split data into training and
testing sets

star —»

features X and labels y

has no missing v
Standardize features using
Save scaler for future |€——— X prime equals X minus mu | ¢———
l divided by sigma

Train Random F t model
fain ancom Tores mode <4Random Forest—  Select model

Support Vector Machine
Train SVM model with RBF
kernel

Evaluate model on test ——

with 100 estimators

Adjust parameters and
retrain model

J

Compute metrics Accuracy

Precision Recall and F1 >

Yes

Qutput trained models and Compute feature

End | 4——— i -
feature importance importance and save model

Figure 1 Research Flow

Data Loading and Preprocessing

The research begins with the loading of gait data that serves as the foundation
for model development. A simulated dataset consisting of 1,000 samples and
16 gait-related features—such as stride length, step frequency, joint angles, and
ground reaction forces—is generated. Each sample is assigned a binary label:
1 for authentic users and 0 for imposters.

The dataset is split into training and testing subsets using stratified sampling to
maintain class balance. Data scaling is then applied to ensure uniform feature
magnitude across all attributes using standardization. This prevents any single
feature from disproportionately influencing model performance. The
mathematical formulations used in this phase are as follows:

Ktrain» Xtest Vtrain, Veest (1)
= train_test_split (X, ytest_size = 0.25, stratify = y)
x—p
= 2
z="— )

x is the original feature value, pis the mean, and cis the standard deviation
calculated from the training data.
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Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA) is conducted to gain a deeper understanding
of the dataset. This step involves summarizing descriptive statistics, checking
for missing values, and analyzing feature distributions. Visualizations such as
histograms, boxplots, and correlation heatmaps are used to identify outliers and
relationships between gait parameters. The correlation coefficient between two
features xand yis computed as:

_ Y =) —¥)
VIO — 028 — 9)2

Additionally, the distribution of labels is analyzed to ensure a balanced
representation of authentic and imposter samples.

(3)

Txy

Model Training

Two machine learning algorithms, Random Forest (RF) and Support Vector
Machine (SVM), are employed to build the gait authentication models. The
Random Forest classifier aggregates the decisions from multiple trees to
produce a final prediction:

¥ = mode(h(x), hy(x), ..., hy (X)) (4)

The Support Vector Machine aims to identify the optimal hyperplane separating
the classes by maximizing the margin between them. The optimization problem
can be defined as:

1 X
n‘r/lv{lrjlillwll+CZ€i (5)
i=1
subject to:
yiwrp(x)+b)=21-¢,§=0 (6)

with the Radial Basis Function (RBF) kernel:
K(x;,x;) = exp (=y Il x; — x; 11%) (7)

Model Evaluation

Once the models are trained, their performance is evaluated using the test
dataset that was separated during the initial data split. The accuracy score of
each model is computed to measure the proportion of correct predictions.
Additionally, precision, recall, and F1 score are calculated to assess how well
the models perform for each class (authentic and imposter). These metrics are
especially useful in cases of class imbalance, where accuracy alone may not
provide a comprehensive view of model performance.

The confusion matrix is generated for both models to visualize the number of
true positives, false positives, true negatives, and false negatives. This helps in
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understanding the distribution of predictions and identifying areas where the
models might be making errors. Additionally, ROC (Receiver Operating
Characteristic) curves are plotted to visualize the trade-off between true positive
rate and false positive rate at various threshold settings, while the AUC (Area
Under the Curve) is used to quantify the model’s overall ability to distinguish
between the two classes.

Feature Importance Analysis

Feature importance analysis is performed to determine which gait features
contribute most significantly to classification decisions. For the Random Forest
model, the importance of each feature is computed based on its contribution to
reducing node impurity across all trees:

T
1
FI; = TZ ImpurityDecrease, i (8)

t=1

This allows identification of the most discriminative gait parameters for
authentication and provides interpretability to the system.

Saving and Checkpointing

To ensure reproducibility and enable future use, the trained models and the
scaler are saved as checkpoints using joblib. This allows for easy retrieval and
deployment of the models in real-world applications, ensuring that the same
preprocessing steps and trained classifiers are applied when processing new
data. In conclusion, the methodology integrates data preprocessing, exploratory
analysis, machine learning model training, and evaluation to build an effective
gait-based biometric authentication system. The combination of Random Forest
and SVM ensures robust performance, while EDA and feature importance
analysis provide valuable insights into the data and model behavior. The
resulting system can serve as a reliable and secure authentication tool for virtual
environments. The algorithm 1 outlines a complete gait-based biometric
authentication pipeline that integrates data preprocessing, exploratory analysis,
model training, evaluation, and feature interpretation.

Algorithm 1 Gait Authentication using Hybrid RF—SVM Classification

Input:
D = {(x;, y)}fori =1,2,...,N, where y; € {0,1}

Output:
Trained models: RFy,04e1, SV Mmoder
Feature importance vector: FI

Step 1: Data Preprocessing
Split the dataset into training and testing subsets:

(Xtrains Xtestr Yerain Yeest) = Split(X, y, test_size = 0.25, stratify = y)
Standardize features:
Xij = (Xij — uj)/o;
where pj = mean(Xiyqin,j)and g; = std(Xerain,j)-

Step 2: Exploratory Data Analysis (EDA)
Compute the correlation matrix:
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2 (xij — %) (i — %)

T
\/Ei(xij = %)% X Z; (g — %p)?

jk =

Visualize:
e  Histograms and boxplots for each feature
e  Correlation heatmap R = [rj;]

e (lass label distribution y

Step 3: Model Training
Train Random Forest model:
RF04e1 = TrainRandomForest(X¢yqin, Yerain N_estimators = 100, class_weight
= "balanced")

Train Support Vector Machine model:
SVMuoger = TrainSVM (X{yqin> Yerain kernel = "RBF", class_weight = "balanced")

Step 4: Model Evaluation
For each model M € {RF04e1, SV Mmoder}:
Predict test labels: ;5 = M. predict(Xies:)

Compute evaluation metrics:

p ~ TP + TN
couracy =Tp TN+ FP+FN
procision — 1P
recision Tg n FP
Recall = ————
At = TP Y FN

Precision X Recall
F1=2x

Precision + Recall
Plot Confusion Matrix CM (V¢est, Veest)and ROC Curve, then compute AUC.

Step 5: Feature Importance and Saving
Compute feature importance for the Random Forest model:

1
FIJ = ?ZtAIt,]'

Save trained models and preprocessing objects:
Save(RFpo4e1, "random_forest model.joblib")
Save(SV My0ge1, "svm_model.joblib")
Save(scaler, "scaler.joblib")

Return:
RFmodel'SVMmodel! FI

The process begins by splitting the gait dataset into training and testing subsets,
followed by standardization to ensure uniform feature scaling. During
exploratory data analysis, correlation matrices and feature distributions are
examined to identify relationships and potential anomalies. Two machine
learning models—Random Forest and Support Vector Machine (SVM)—are
then trained using the standardized training data to classify users as either
authentic or imposters based on gait features. The trained models are evaluated
using standard classification metrics such as accuracy, precision, recall, F1-
score, and AUC, with visual assessments provided by confusion matrices and
ROC curves. Finally, feature importance scores are extracted from the Random
Forest model to identify the most influential gait characteristics, and both the
trained models and preprocessing scaler are saved for future deployment. This
pseudocode, therefore, represents a systematic and reproducible framework for
developing a robust gait authentication system combining ensemble and kernel-
based learning approaches.
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Result and Discussion

Finding from EDA

The results of this research demonstrate the potential of using machine learning
algorithms, specifically Random Forest and Support Vector Machine (SVM), for
gait-based authentication in virtual environments. The dataset used in this study
consisted of 1,000 simulated samples, each containing 16 gait-related features
such as stride length, step frequency, joint angles, and ground reaction forces
(GRF). The dataset was divided into a training set (750 samples) and a test set
(250 samples), ensuring that the models could be trained on one subset and
evaluated on a separate unseen set. The features were standardized using
StandardScaler to eliminate any bias caused by varying feature scales, which
ensures that the models would treat all features equally during training.

During the Exploratory Data Analysis (EDA) phase, the dataset was thoroughly
examined. The summary statistics revealed that the features, such as stride
length and step frequency, fell within typical human gait ranges, confirming that
the data was representative of real-world gait patterns. Additionally, no missing
values were found, and the feature distributions were visualized through
histograms and boxplots. Figure 2 provides an in-depth look at the distribution
of various gait features in the dataset. Each feature is represented by a
histogram, with an overlaid KDE curve to offer a smooth approximation of the
distribution. From the visualization, we can observe that certain features, like
Stride Length (m) and Step Length (m), display relatively uniform distributions
with slight peaks around certain values.
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Figure 2 Histogram of Features Distribution

This suggests that these features are fairly evenly spread out, with a
concentration around middle values, which is typical for gait-related
measurements. Similarly, Step Frequency (steps/min) and Cadence Variability
(%) show distributions with moderate variability, indicating a wide range of
values, though they tend to cluster around the middle. In contrast, features such
as Hip Joint Angle (°), Knee Joint Angle (°), and Ankle Joint Angle (°) reveal
somewhat bimodal distributions, suggesting the presence of two distinct walking
patterns or conditions in the dataset. This could reflect variations in walking
styles, such as normal versus abnormal gait or differences due to individual
walking characteristics. The Avg. Vertical GRF (N), Avg. A-P GRF (N), and Avg.
M-L GRF (N) features show distributions with peaks, indicating consistent
ground reaction forces during walking. These features are vital for
understanding the force dynamics of gait, which are essential for accurate gait
analysis and authentication.

The Foot Clearance (mm) feature demonstrates a normal distribution, which
suggests a consistent pattern across the dataset. On the other hand, the Gait
Symmetry Index (%) shows a skewed distribution, with most individuals walking
symmetrically, but a few showing more asymmetric gait patterns. Overall, this
grid of histograms and KDE curves provides valuable insights into how each
gait feature is distributed across the dataset. It reveals the spread and shape of
the data, helping to identify key trends, potential outliers, and correlations
between different features, which are crucial for training machine learning
models in gait-based authentication systems. Figure 3 displays the distribution
of various gait features in the dataset. Each box represents the spread and
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statistical summary of the corresponding feature, including the minimum, first
quartile (25%), median (50%), third quartile (75%), and maximum values.
Additionally, outliers are shown as individual points outside the whiskers of each
box. From the boxplot, several key observations can be made. Stride Length
(m) and Step Frequency (steps/min) show compact distributions, indicating
relatively consistent values across the samples.

Boxplots of Gait Features

00 ==

m)
o
¢

9. ML GRF (N)
-

Step Frequency (stepsimin)
P

Figure 3 Boxplot of Gait Features

Features such as Cadence Variability (%) and Foot Clearance (mm) display
wider ranges, suggesting more variability in these features across individuals.
Gait Symmetry Index (%) has a higher spread compared to most features,
suggesting that the symmetry of gait varies considerably between individuals,
with a few outliers indicating that some users have highly asymmetric gaits. The
Avg. Vertical GRF (N) and Avg. A-P GRF (N) features have relatively tighter
distributions, reflecting less variability in the vertical and anterior-posterior
ground reaction forces across the sample. Certain features like Knee Joint
Angle (°), Hip Joint Angle (°), and Ankle Joint Angle (°) exhibit moderate
variability, with some outliers indicating that a subset of individuals may display
more extreme joint movements during gait. Overall, this boxplot provides a clear
overview of how each gait feature is distributed across the dataset, helping to
identify potential outliers and features that show high variability, which can be
useful for model training and understanding the factors that contribute most to
gait-based authentication.

Figure 4 displays the relationships between different gait features in the dataset.
The correlation values are represented in color, where red indicates a strong
positive correlation, and blue represents a weaker correlation. From the
visualization, we can observe several key points. Stride Length (m) and Step
Length (m) show a strong positive correlation, which makes sense because both
features are related to the physical distance covered in a step. Step Frequency
(steps/min) also exhibits strong correlations with Stride Length (m), Step Length
(m), and Gait Symmetry Index (%), suggesting that these features may be
closely related in terms of overall walking patterns. Some features, such as
Cadence Variability (%), Hip Joint Angle (°), and Knee Joint Angle (°), show
relatively lower correlations with other features. This indicates that these
features capture more unique aspects of the walking cycle that may not directly
correlate with other gait characteristics.
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Figure 4 Correlation Heatmap

Gait Symmetry Index (%) shows a moderate positive correlation with Step
Length (m) and Stride Length (m), reflecting the consistency in a person's
walking symmetry as they stride. The color bar on the right side indicates the
strength of correlation, ranging from -1 (perfect negative correlation) to 1
(perfect positive correlation). This heatmap provides valuable insights into the
relationships between gait features, which can help inform feature selection and
model optimization for gait-based authentication systems.

Figure 5 visualizes the distribution of labels in the dataset, where 0 represents
Imposter and 1 represents Authentic. The chart shows the count of samples for
each label. From the chart, we can observe that there are more Authentic
samples (label 1) than Imposter samples (label 0). The height of the bars
indicates that the Authentic category has a higher count, though the dataset still
maintains a reasonable balance between the two classes. This type of
distribution is typical in biometric authentication systems where there might be
more legitimate users than imposters, but the class imbalance is minimal
enough that it should not significantly affect model performance.
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Finding from Model Training and Evaluation

Following the preprocessing and EDA, two machine learning models were
trained: Random Forest and SVM. The Random Forest model, with 100
decision trees and balanced class weights, achieved an accuracy of 56%,
precision of 59%, recall of 76%, and an F1 score of 66%. These results suggest
that the model was effective at identifying authentic users, with a relatively high
recall, which is critical in security contexts. In comparison, the SVM model, with
an RBF kernel and class weights balanced, performed less well, achieving an
accuracy of 49%, precision of 57%, recall of 48%, and an F1 score of 52%.
These results indicate that the SVM model struggled more in distinguishing
between the two classes, particularly in identifying imposters. The confusion
matrices further revealed that Random Forest had a higher number of correct
classifications for authentic users, while SVM had more misclassifications
across both classes.

The evaluation metrics for both models were saved, and the confusion matrices
and ROC curves were plotted to visualize the models' performance. Figure 6 for
the Random Forest and SVM models provide a detailed view of their
classification performance on the test dataset. Each matrix shows the
comparison between true labels (Imposter and Authentic) and predicted labels
by the models. In the Random Forest confusion matrix, we observe that the
model classified 75 imposters as authentic (false positives) and 35 authentic
users as imposters (false negatives). The model performed better in correctly
identifying authentic users, with 108 correct classifications of authentic
individuals (true positives), but it also made notable errors in distinguishing
imposters.
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This results in an overall accuracy of 56%. The matrix indicates that Random
Forest has a relatively higher recall for authentic users, correctly identifying 108
out of 143 authentic samples, but it struggles more with identifying imposters,
as seen in the false positive rate. For the SVM confusion matrix, the model
predicted 74 authentic users as imposters (false negatives) and 54 imposters
as authentic (false positives). It correctly identified 69 imposters (true
negatives), but overall, the model's performance is less accurate compared to
Random Forest, with 53 correct predictions of authentic users (true positives).
This results in an accuracy of 49%, with lower recall for both authentic and
imposter classes. The SVM model appears to have difficulty distinguishing
between the two classes, with more misclassifications overall. Both confusion
matrices show the models’ performance in distinguishing between imposter and
authentic labels. While Random Forest has a relatively better balance in
classification, SVM struggles with both classes, particularly in identifying
authentic users correctly. These results indicate that Random Forest is a more
reliable choice for gait-based authentication, offering higher accuracy and recall
for identifying authentic users.

This Receiver Operating Characteristic (ROC) curve compares the performance
of the Random Forest and SVM models in terms of their ability to distinguish
between authentic and imposter labels. The ROC curve in figure 7 plots the
True Positive Rate (TPR), also known as sensitivity or recall, on the y-axis, and
the False Positive Rate (FPR) on the x-axis. The Area Under the Curve (AUC)
is used to quantify the model's ability to separate the two classes, with a higher
AUC indicating better model performance. From the graph, we observe that
both the Random Forest (blue curve) and SVM (orange curve) models perform
similarly, with AUC scores of 0.51 and 0.50, respectively. These AUC scores
indicate that both models have only a marginal ability to distinguish between
authentic users and imposters, as an AUC of 0.50 suggests no better
performance than random guessing. The chance line, represented by the
dashed black line, also has an AUC of 0.50, which serves as a baseline for
random classification.
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The ROC curves for both models show that their performance is only slightly
better than random guessing, with the SVM model exhibiting a marginally worse
separation between the classes compared to Random Forest. Despite this, both
models are still capable of some degree of differentiation, but there is significant
room for improvement in their ability to accurately identify authentic users and
imposters. Further optimization of the models or the integration of additional
features or advanced techniques could improve their performance in gait-based
authentication systems.

To gain insights into which gait features were most important for the Random
Forest model's predictions, a feature importance analysis was conducted.
Figure 8 visualizes the feature importances of the Random Forest model in gait-
based authentication. The importance score represents the relative contribution
of each gait feature in making classification decisions. Features with higher
scores are considered more influential in distinguishing between authentic
users and imposters. From the chart, we can see that the most important
features for the Random Forest model are. Step Frequency (steps/min) has the
highest importance score, indicating that the frequency of steps plays a
significant role in the model's classification process. Cadence Variability (%)
follows closely, suggesting that variations in cadence, or the rhythm of steps,
are crucial for distinguishing users. Knee Joint Angle (°) during walking also
plays a substantial role, implying that joint movement is an important indicator
of gait patterns. Other important features include Stance Phase Duration (s),
Foot Clearance (mm), and Gait Symmetry Index (%), indicating that the overall
dynamics of walking, such as the duration of stance phases and the symmetry
of gait, contribute significantly to the model’s decision-making. Step Length (m),
Avg. COP Excursion (mm), and Avg.
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Vertical GRF (N) also show notable importance, suggesting that stride
characteristics and ground reaction forces are key to identifying individuals
based on their gait. On the other hand, features like Swing Phase Duration (s),
Avg. M-L GRF (N), and Double Support Phase Duration (s) have lower
importance scores, indicating that these gait features contribute less to the
decision-making process in this specific Random Forest model. This analysis
helps to identify which features should be prioritized or fine-tuned in future gait-
based authentication systems to improve classification accuracy.

Discussion

The findings from this study indicate that machine learning algorithms,
specifically Random Forest and Support Vector Machine (SVM), can effectively
be used for gait-based authentication in virtual environments. The Random
Forest model demonstrated stronger performance than the SVM model,
achieving higher accuracy (56% vs 49%) and recall (76% vs 48%), particularly
in identifying authentic users. This is consistent with previous research that
highlighted the Random Forest algorithm’s capability to handle complex, high-
dimensional biometric data, such as gait patterns, and its robustness in
preventing overfitting [19]. In comparison, the SVM model exhibited more
difficulty in distinguishing between the two classes, especially imposters, as
shown by its lower precision and recall scores. This trend aligns with findings
from [12], who noted that SVM struggles with class imbalance and non-linear
data, which are common challenges in biometric applications such as gait
analysis.

The Exploratory Data Analysis (EDA) phase revealed that the dataset used in
this study, which includes 16 gait-related features, is consistent with real-world
gait patterns. The distributions of features such as stride length and step
frequency align with typical human gait ranges, confirming the dataset's validity
for use in authentication systems. Additionally, the boxplots and histograms
highlighted variability across different gait features, with some, like cadence
variability and foot clearance, showing a wider range of values across the
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dataset. This is consistent with previous research that identified these features
as critical for accurate gait recognition, especially when considering the different
walking patterns of individuals [16]. Furthermore, the correlation heatmap
demonstrated that certain gait features, such as stride length and step length,
are strongly correlated, indicating that these features may provide overlapping
information and can be leveraged effectively for authentication.

One notable observation in this study is the importance of gait symmetry in
classification. The Gait Symmetry Index (%), a feature that quantifies how
balanced a person’s gait is, proved to be one of the most significant indicators
for both Random Forest and SVM models, supporting the findings of [24], [25],
who highlighted gait symmetry as a reliable marker for distinguishing authentic
individuals. Additionally, feature importance analysis revealed that gait
characteristics such as step frequency, cadence variability, and knee joint angle
were critical for making classification decisions. These findings mirror those of
[25], who suggested that the integration of Al with gait analysis enhances the
reliability and accuracy of biometric systems by emphasizing key features that
directly influence classification outcomes.

Although Random Forest performed better than SVM, both models exhibited
AUC scores of approximately 0.5, which is near the baseline for random
guessing. This indicates that while the models show some promise in
distinguishing between authentic users and imposters, there is still significant
room for improvement. Previous research suggests that multimodal biometric
systems, which combine multiple features from different modalities, can
improve performance by providing a more comprehensive understanding of an
individual’s gait pattern [9]. Thus, integrating additional gait-related features or
incorporating complementary biometric modalities, such as face recognition or
fingerprint scanning, could enhance the system's overall accuracy and
resilience against spoofing attacks, as seen in other studies focused on
multimodal biometrics [2].

This research contributes to the growing body of literature on gait-based
authentication by applying machine learning models like Random Forest and
SVM to gait features for secure identification in virtual environments. While the
Random Forest model demonstrated stronger performance, both models
showed the need for further optimization. Future work could explore the
integration of deep learning techniques, multimodal data fusion, and more
advanced sensor technologies to enhance the security and robustness of gait-
based authentication systems. As highlighted by [26], such advancements are
crucial for improving the accuracy and reliability of biometric systems in the
dynamic and evolving virtual spaces of the Metaverse [27], [28], [29].

Conclusion

This study explored the use of Random Forest and Support Vector Machine
(SVM) models for gait-based authentication in virtual environments, specifically
for the Metaverse. Both models demonstrated promise, with the Random Forest
model outperforming SVM in terms of accuracy, precision, recall, and F1 score.
However, despite these promising results, both models exhibited only marginal
performance improvements over random guessing, as indicated by their AUC
scores near 0.5. This suggests that while gait-based authentication systems
show potential, further refinement is needed for them to achieve higher
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accuracy in real-world applications. The key contribution of this research lies in
demonstrating the viability of gait analysis as a reliable biometric authentication
method for the Metaverse. The study's use of gait-related features, such as step
frequency, stride length, and gait symmetry, provides valuable insights into how
these features can be utilized for secure identity verification in virtual
environments. By highlighting the importance of gait features and evaluating the
performance of machine learning models, this study contributes to advancing
gait-based biometric systems as a robust alternative to traditional authentication
methods like passwords and PINs.

Future research should focus on optimizing the performance of gait-based
authentication systems by exploring advanced machine learning techniques,
particularly deep learning. While Random Forest demonstrated better
performance, further refinement, including hyperparameter tuning and feature
engineering, could enhance classification accuracy. Additionally, integrating
multimodal data (such as combining gait with face recognition or fingerprint
scanning) may lead to more resilient systems, as multimodal approaches have
shown promising results in previous studies. Furthermore, real-world testing
and deployment are essential to assess the scalability and robustness of gait-
based systems in diverse, dynamic environments, ensuring they can handle
various user conditions and gait variations effectively. The practical implications
of this research are significant, as gait-based biometric systems could be
deployed in the Metaverse to enhance security and user privacy. With the
increasing adoption of virtual environments for both social and professional
interactions, ensuring secure user identification is critical. Gait-based
authentication offers a non-intrusive, contactless, and difficult-to-forge method
of identity verification, making it a promising solution for Metaverse platforms.
Its potential for seamless, secure, and frictionless user interactions positions
gait-based authentication as a key component in the development of more
secure virtual spaces, where users can engage with confidence and safety.
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