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ABSTRACT 

This paper investigates the potential of gait-based authentication for securing virtual 

environments, specifically within the Metaverse. With the growing need for reliable 

and secure identity verification in virtual spaces, traditional authentication methods, 

such as passwords or PINs, have proven insufficient. In contrast, biometric 

authentication systems, including gait analysis, provide a more secure and user-

friendly alternative by leveraging unique physiological and behavioral traits for identity 

verification. This research applies machine learning algorithms—Random Forest and 

Support Vector Machine (SVM)—to gait data for distinguishing between authentic 

users and imposters. The dataset consists of 1,000 simulated gait samples with 16 

features, such as stride length, step frequency, joint angles, and ground reaction 

forces (GRF). After performing exploratory data analysis (EDA), including feature 

distribution visualization and correlation analysis, two models were trained on the 

data. The Random Forest model outperformed the SVM model, achieving an 

accuracy of 56% and a recall of 76%, indicating its effectiveness in identifying 

authentic users. Despite the promising results, both models showed only marginal 

improvement over random guessing, highlighting the need for further optimization. 

This study contributes to the growing body of research on gait-based biometric 

systems by demonstrating their potential as a viable method for identity verification in 

virtual environments. It also identifies the most important gait features, such as step 

frequency, cadence variability, and knee joint angle, that significantly contribute to the 

classification process. Future research should explore advanced deep learning 

techniques and the integration of multimodal biometric systems to enhance the 

performance and reliability of gait-based authentication. 

Keywords Gait-Based Authentication, Metaverse Security, Machine Learning, 

Random Forest, Biometric Systems 

INTRODUCTION 

The Metaverse is rapidly evolving into a digital frontier that fosters virtual 

interactions across various sectors, offering immersive user experiences while 

simultaneously raising significant concerns about security and identity 

verification. As the virtual world grows, ensuring that users can interact securely 

becomes a critical challenge. Biometric authentication systems, particularly 

those leveraging gait analysis, are increasingly seen as essential tools to 

address these concerns. By providing a means of verifying identity through 

unique behavioral characteristics, gait analysis offers a promising solution to 

safeguard interactions within virtual environments. 
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Biometric systems utilize individual physiological and behavioral traits, such as 

fingerprints, facial recognition, and gait patterns, to authenticate identity. These 

systems offer a more secure alternative to traditional authentication methods 

like passwords, which are becoming increasingly inadequate in protecting 

digital interactions [1]. Gait analysis, which evaluates a person's walking 

pattern, stands out as a particularly reliable biometric marker in the Metaverse. 

Its non-intrusive nature and the difficulty in replicating a person’s walking style 

make it an attractive option for ensuring genuine interactions in virtual spaces 

[2]. 

To further enhance security, advancements in biometric technologies, such as 

cancelable biometrics, provide additional privacy protection by masking 

biometric traits. This ensures that even in the event of data breaches, 

individuals’ identities remain secure [3], [4]. Combining multiple biometric traits 

in multi-modal systems also helps reduce error rates in identity verification, 

making it more difficult for attackers to spoof or bypass the system [5]. As the 

Metaverse expands, the integration of these sophisticated biometric systems 

into existing security frameworks will be vital to maintaining both privacy and 

trust in virtual environments. 

The primary objective of this research is to explore the use of gait-based 

authentication systems powered by machine learning algorithms, aiming to 

improve user security within the Metaverse. As the virtual world becomes more 

immersive and integral to daily life, ensuring secure and seamless user 

interactions is paramount. By leveraging gait analysis, which examines unique 

walking patterns, this study seeks to validate its potential as a reliable biometric 

tool for identity verification in virtual environments. 

To achieve this, the research goal is to optimize the authentication accuracy of 

gait-based systems by applying Random Forest and Support Vector Machine 

(SVM) algorithms. These two machine learning algorithms are well-suited for 

classification tasks, with Random Forest providing a robust ensemble approach 

and SVM offering precision in identifying patterns within data. The combination 

of these models aims to enhance the overall effectiveness of gait recognition 

for user authentication in the Metaverse, reducing the risk of identity spoofing 

or unauthorized access. 

The significance of this research lies in demonstrating how gait analysis can 

serve as a dependable biometric identifier within the Metaverse. As virtual 

spaces expand and require secure user management, gait-based 

authentication presents a non-intrusive, difficult-to-replicate method for verifying 

identities. By showcasing its potential through machine learning techniques, this 

study highlights the value of gait as a reliable, scalable solution for biometric 

security in the growing digital frontier. 

Literature Review 

Overview Of Biometric Authentication 

Biometric authentication has become an essential security mechanism in virtual 

environments due to its ability to utilize unique physiological and behavioral 

traits to verify an individual’s identity. Traditional authentication methods, such 

as passwords or PINs, often fall short in providing the level of security required 

for sensitive interactions within virtual spaces. This is because these methods 
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are prone to being easily guessed, stolen, or shared. In contrast, biometric 

systems provide more secure alternatives by using non-transferable, difficult-

to-forge identifiers, such as facial features, fingerprints, or iris patterns. The 

distinctiveness of these traits ensures that only the person to whom they belong 

can access the system, providing a higher level of security. Furthermore, 

biometrics offer a user-friendly experience since they do not require the user to 

remember passwords or carry additional tokens. Instead, these systems 

authenticate identity based on traits that are inherently present in the individual, 

making them more convenient and efficient [6]. 

Among the various biometric methods, face recognition is one of the most 

widely used and highly effective techniques in virtual environments. It leverages 

the unique structure and features of an individual’s face, such as the distance 

between eyes, nose shape, and jawline, to accurately identify or authenticate a 

person. This method is particularly advantageous in virtual settings due to its 

contactless nature, allowing for quick and seamless authentication. For 

instance, face recognition systems are increasingly integrated into smart 

devices, security access systems, and online platforms, enabling users to 

authenticate themselves swiftly and securely. Recent advancements have 

significantly enhanced face recognition capabilities, allowing these systems to 

maintain high levels of accuracy even when users wear masks or other facial 

coverings—common in many public settings. Deep learning techniques, 

particularly those that utilize models like VGG16 combined with random Fourier 

features, have improved the adaptability and robustness of face recognition 

systems, ensuring they can operate effectively under various conditions [7], [8]. 

Another key biometric method is fingerprint scanning, which has been widely 

adopted due to its high reliability and ease of use. Fingerprint recognition is 

particularly common in security-sensitive applications such as Automated Teller 

Machines (ATMs), mobile devices, and access control systems. This method’s 

primary advantage lies in the distinctiveness of each individual’s fingerprint, 

which remains unchanged throughout life. The integration of advanced image 

processing techniques, such as Prewitt filtering for segmentation, has further 

refined fingerprint recognition accuracy, enabling these systems to provide 

highly reliable identity verification. Furthermore, the use of multimodal biometric 

systems is gaining traction, as it combines several biometric methods, such as 

face recognition, fingerprint scanning, and iris scanning, to improve the 

accuracy and resilience of the authentication process. This approach helps 

mitigate the weaknesses of single-modal systems by enhancing their overall 

performance and reliability. In educational and security settings, the fusion of 

these diverse modalities has been shown to significantly enhance the 

authentication process, providing a more robust system that can adapt to 

varying conditions [9], [10]. 

The continual advancements in sensor technology, image processing, and deep 

learning have driven the development of these biometric systems, allowing them 

to operate effectively in dynamic and contactless virtual environments. By 

integrating deep learning algorithms, biometric systems can improve their ability 

to process complex data from multiple modalities and continuously learn from 

new inputs, increasing their accuracy over time. The evolution of multimodal 

biometric systems has been particularly impactful, enabling more sophisticated 

methods of identity verification that cater to the growing security needs of virtual 
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spaces. These systems offer greater resilience against attacks, such as 

spoofing, and enhance the user experience by providing a seamless and 

reliable method of authentication. In summary, the integration of biometric 

authentication methods like face recognition and fingerprint scanning into virtual 

environments significantly enhances security while addressing the limitations of 

traditional methods, offering both increased protection and improved user 

convenience [11]. 

Gait-Based Authentication 

Gait-based authentication has emerged as a significant method for biometric 

identification, leveraging an individual's unique walking patterns to verify their 

identity. Its primary appeal lies in its non-intrusive nature, which allows for 

identification from a distance without the need for direct interaction with the 

subject. This characteristic makes it particularly valuable in both surveillance 

and access control systems, offering a secure, seamless alternative to 

traditional authentication methods like passwords or physical identification 

cards. Gait-based systems are also less susceptible to spoofing or forgery, as 

replicating an individual's gait is inherently difficult. This makes gait analysis an 

attractive solution in modern security frameworks, where ensuring the privacy 

and safety of users is crucial [12]. 

The application of gait for identification has expanded significantly due to 

advancements in sensor technologies, machine learning techniques, and a 

deeper understanding of human biomechanics. The use of inertial 

measurement units (IMUs) for analyzing gait patterns in real-world settings is 

one such advancement. These devices capture key temporal parameters that 

are essential for accurate gait recognition, allowing systems to recognize 

individuals based on their walking patterns even in dynamic, real-world 

environments. Recent studies have shown that gait analysis can be applied in 

various sectors beyond traditional security, such as healthcare. For instance, 

gait abnormalities have been linked to psychological conditions, such as 

depression, showcasing the broader applications of gait analysis in both health 

monitoring and identity verification [13]. 

Furthermore, gait analysis has proven valuable in forensic contexts, where it 

can be used to corroborate identities by comparing gait characteristics with 

known patterns. This is particularly significant in criminal investigations, where 

gait features can provide critical evidence to support or challenge the identity of 

suspects [14], [15]. While gait analysis has traditionally been associated with 

medical rehabilitation and patient monitoring, it is increasingly recognized as a 

viable biometric authentication tool [16]. The ability to identify individuals by their 

gait, especially in situations where facial features or fingerprints are obscured, 

makes it a promising alternative for secure authentication systems. Ongoing 

research and technological developments in this field will be crucial for refining 

gait recognition methods, ensuring their accuracy and reliability in both security 

and healthcare applications [17], [18]. 

Machine Learning in Biometric Systems 

Machine learning algorithms play a vital role in improving the performance of 

biometric authentication systems, helping to process complex biometric data 

and ensuring secure identification. Among the various machine learning 

algorithms, Random Forest and Support Vector Machine (SVM) are particularly 
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well-suited for this purpose due to their robust classification capabilities and 

ability to handle high-dimensional data. These algorithms enable the accurate 

analysis of biometric features such as facial recognition, fingerprints, and gait 

patterns, making them indispensable tools in modern biometric systems [19], 

[20]. 

The Random Forest algorithm is an ensemble learning technique that builds 

multiple decision trees based on random subsets of the training data. It then 

aggregates the predictions from these individual trees, typically using majority 

voting, to produce a final classification result. This method is particularly 

effective in handling large datasets with many features, which is often the case 

in biometric applications where multiple physiological traits are analyzed 

simultaneously. A significant advantage of Random Forest is its ability to 

mitigate overfitting, a common challenge in traditional decision tree models. By 

averaging the results of many trees, it enhances generalization and improves 

performance on unseen data [19]. In multimodal biometric systems, where 

multiple biometric features are combined, Random Forest has been 

successfully applied to analyze interactions among diverse biometric inputs, 

such as facial features, fingerprints, and gait patterns [2]. Its robustness and 

adaptability make it a popular choice for high-accuracy biometric systems. 

The Support Vector Machine (SVM) is another powerful algorithm widely used 

for classification tasks, particularly in scenarios where the data is high-

dimensional. SVM's primary objective is to find the optimal hyperplane that 

separates data points belonging to different classes while maximizing the 

margin between the closest points, known as support vectors. This ability to 

identify an optimal separation boundary makes SVM highly effective for 

biometric applications where distinguishing features need to be extracted from 

complex data. In particular, SVM is highly effective in tasks like face recognition 

and fingerprint classification, where the data is not always linearly separable. 

The use of kernel functions enables SVM to handle non-linear relationships, 

further enhancing its applicability in high-dimensional biometric data spaces 

[21]. SVM is also resistant to overfitting, making it a reliable choice for extracting 

relevant features from biometric data like fingerprints, iris patterns, and facial 

images. Additionally, SVM can be combined with other machine learning 

techniques to improve feature extraction and classification accuracy, thereby 

enhancing the performance of biometric systems [22]. 

Both Random Forest and SVM have demonstrated their importance in 

advancing biometric authentication systems, offering effective solutions for 

securely verifying identities while maintaining high accuracy. These algorithms 

help ensure that biometric systems are resilient to adversarial attacks and 

capable of processing complex biometric data efficiently, making them essential 

components of modern security frameworks [23]. As biometric technologies 

continue to evolve, the integration of these machine learning techniques will 

play a key role in enhancing the security, accuracy, and robustness of 

authentication systems. 

Method 

The methodology employed in this study is systematically illustrated in figure 1. 

The process begins with loading the gait dataset containing features (X) and 

labels (y), followed by validating the dataset and handling any missing values. 
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Once the dataset is confirmed to be valid, the features are standardized and the 

data is split into training and testing sets. Next, a model is selected—either a 

Random Forest or a Support Vector Machine (SVM) with an RBF kernel—and 

trained accordingly. The trained model is then evaluated using performance 

metrics such as accuracy, precision, recall, and F1-score. If the performance is 

unsatisfactory, the model parameters are adjusted and retraining is conducted 

iteratively until acceptable results are achieved. Finally, the trained models are 

saved, and feature importance is computed to identify the contribution of each 

feature to the model’s performance. 

 
Figure 1 Research Flow 

Data Loading and Preprocessing 

The research begins with the loading of gait data that serves as the foundation 

for model development. A simulated dataset consisting of 1,000 samples and 

16 gait-related features—such as stride length, step frequency, joint angles, and 

ground reaction forces—is generated. Each sample is assigned a binary label: 

1 for authentic users and 0 for imposters. 

The dataset is split into training and testing subsets using stratified sampling to 

maintain class balance. Data scaling is then applied to ensure uniform feature 

magnitude across all attributes using standardization. This prevents any single 

feature from disproportionately influencing model performance. The 

mathematical formulations used in this phase are as follows: 

𝑋train, 𝑋test, 𝑦train, 𝑦test

= train_test_split (𝑋, 𝑦,test_size = 0.25, stratify = 𝑦) 
(1) 

𝑧 =
𝑥 − 𝜇

𝜎
 (2) 

𝑥 is the original feature value, 𝜇is the mean, and 𝜎is the standard deviation 

calculated from the training data. 
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Exploratory Data Analysis (EDA) 

Exploratory Data Analysis (EDA) is conducted to gain a deeper understanding 

of the dataset. This step involves summarizing descriptive statistics, checking 

for missing values, and analyzing feature distributions. Visualizations such as 

histograms, boxplots, and correlation heatmaps are used to identify outliers and 

relationships between gait parameters. The correlation coefficient between two 

features 𝑥and 𝑦is computed as: 

𝑟𝑥𝑦 =
∑(𝑥𝑖 − 𝑥̄)(𝑦𝑖 − 𝑦̄)

√∑(𝑥𝑖 − 𝑥̄)2∑(𝑦𝑖 − 𝑦̄)2
 (3) 

Additionally, the distribution of labels is analyzed to ensure a balanced 

representation of authentic and imposter samples. 

Model Training 

Two machine learning algorithms, Random Forest (RF) and Support Vector 

Machine (SVM), are employed to build the gait authentication models. The 

Random Forest classifier aggregates the decisions from multiple trees to 

produce a final prediction: 

𝑦̂ = mode(ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝑛(𝑥)) (4) 

The Support Vector Machine aims to identify the optimal hyperplane separating 

the classes by maximizing the margin between them. The optimization problem 

can be defined as: 

min 
𝐰,𝑏

1

2
∣∣ 𝐰 ∣∣2+ 𝐶 ∑ 𝜉𝑖

𝑛

𝑖=1

 (5) 

subject to: 

𝑦𝑖(𝐰𝑇𝜙(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖, 𝜉𝑖 ≥ 0 (6) 

with the Radial Basis Function (RBF) kernel: 

𝐾(𝑥𝑖, 𝑥𝑗) = exp (−𝛾 ∣∣ 𝑥𝑖 − 𝑥𝑗 ∣∣2) (7) 

Model Evaluation 

Once the models are trained, their performance is evaluated using the test 

dataset that was separated during the initial data split. The accuracy score of 

each model is computed to measure the proportion of correct predictions. 

Additionally, precision, recall, and F1 score are calculated to assess how well 

the models perform for each class (authentic and imposter). These metrics are 

especially useful in cases of class imbalance, where accuracy alone may not 

provide a comprehensive view of model performance. 

The confusion matrix is generated for both models to visualize the number of 

true positives, false positives, true negatives, and false negatives. This helps in 
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understanding the distribution of predictions and identifying areas where the 

models might be making errors. Additionally, ROC (Receiver Operating 

Characteristic) curves are plotted to visualize the trade-off between true positive 

rate and false positive rate at various threshold settings, while the AUC (Area 

Under the Curve) is used to quantify the model’s overall ability to distinguish 

between the two classes. 

Feature Importance Analysis 

Feature importance analysis is performed to determine which gait features 

contribute most significantly to classification decisions. For the Random Forest 

model, the importance of each feature is computed based on its contribution to 

reducing node impurity across all trees: 

𝐹𝐼𝑗 =
1

𝑇
∑ ImpurityDecrease

𝑡,𝑗

𝑇

𝑡=1

 (8) 

This allows identification of the most discriminative gait parameters for 

authentication and provides interpretability to the system. 

Saving and Checkpointing 

To ensure reproducibility and enable future use, the trained models and the 

scaler are saved as checkpoints using joblib. This allows for easy retrieval and 

deployment of the models in real-world applications, ensuring that the same 

preprocessing steps and trained classifiers are applied when processing new 

data. In conclusion, the methodology integrates data preprocessing, exploratory 

analysis, machine learning model training, and evaluation to build an effective 

gait-based biometric authentication system. The combination of Random Forest 

and SVM ensures robust performance, while EDA and feature importance 

analysis provide valuable insights into the data and model behavior. The 

resulting system can serve as a reliable and secure authentication tool for virtual 

environments. The algorithm 1 outlines a complete gait-based biometric 

authentication pipeline that integrates data preprocessing, exploratory analysis, 

model training, evaluation, and feature interpretation.  

Algorithm 1 Gait Authentication using Hybrid RF–SVM Classification 

Input: 

𝐷 = {(𝑥𝑖 , 𝑦𝑖)}for 𝑖 = 1,2, . . . , 𝑁, where 𝑦𝑖 ∈ {0,1} 

Output: 

Trained models: 𝑅𝐹𝑚𝑜𝑑𝑒𝑙 , 𝑆𝑉𝑀𝑚𝑜𝑑𝑒𝑙 

Feature importance vector: 𝐹𝐼 

Step 1: Data Preprocessing 

Split the dataset into training and testing subsets: 

(𝑋𝑡𝑟𝑎𝑖𝑛, 𝑋𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑒𝑠𝑡) = 𝑆𝑝𝑙𝑖𝑡(𝑋, 𝑦, 𝑡𝑒𝑠𝑡_𝑠𝑖𝑧𝑒 = 0.25, 𝑠𝑡𝑟𝑎𝑡𝑖𝑓𝑦 = 𝑦) 

Standardize features: 

𝑋𝑖𝑗
′ = (𝑋𝑖𝑗 − 𝜇𝑗)/𝜎𝑗 

where 𝜇𝑗 = 𝑚𝑒𝑎𝑛(𝑋𝑡𝑟𝑎𝑖𝑛,𝑗)and 𝜎𝑗 = 𝑠𝑡𝑑(𝑋𝑡𝑟𝑎𝑖𝑛,𝑗). 

Step 2: Exploratory Data Analysis (EDA) 

Compute the correlation matrix: 
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𝑟𝑗𝑘 =
Σ𝑖(𝑥𝑖𝑗 − 𝑥̄𝑗)(𝑥𝑖𝑘 − 𝑥̄𝑘)

√Σ𝑖(𝑥𝑖𝑗 − 𝑥̄𝑗)2 × Σ𝑖(𝑥𝑖𝑘 − 𝑥̄𝑘)2

 

Visualize: 

• Histograms and boxplots for each feature 

• Correlation heatmap 𝑅 = [𝑟𝑗𝑘] 

• Class label distribution 𝑦 

Step 3: Model Training 

Train Random Forest model: 

𝑅𝐹𝑚𝑜𝑑𝑒𝑙 = 𝑇𝑟𝑎𝑖𝑛𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑜𝑟𝑒𝑠𝑡(𝑋𝑡𝑟𝑎𝑖𝑛
′ , 𝑦𝑡𝑟𝑎𝑖𝑛, 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 100, 𝑐𝑙𝑎𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡

= "𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑") 

Train Support Vector Machine model: 

𝑆𝑉𝑀𝑚𝑜𝑑𝑒𝑙 = 𝑇𝑟𝑎𝑖𝑛𝑆𝑉𝑀(𝑋𝑡𝑟𝑎𝑖𝑛
′ , 𝑦𝑡𝑟𝑎𝑖𝑛, 𝑘𝑒𝑟𝑛𝑒𝑙 = "𝑅𝐵𝐹", 𝑐𝑙𝑎𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡 = "𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑") 

Step 4: Model Evaluation 

For each model 𝑀 ∈ {𝑅𝐹𝑚𝑜𝑑𝑒𝑙 , 𝑆𝑉𝑀𝑚𝑜𝑑𝑒𝑙}: 

Predict test labels: 𝑦̂𝑡𝑒𝑠𝑡 = 𝑀. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋𝑡𝑒𝑠𝑡
′ ) 

Compute evaluation metrics: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Plot Confusion Matrix 𝐶𝑀(𝑦𝑡𝑒𝑠𝑡 , 𝑦̂𝑡𝑒𝑠𝑡)and ROC Curve, then compute AUC. 

Step 5: Feature Importance and Saving 

Compute feature importance for the Random Forest model: 

𝐹𝐼𝑗 =
1

𝑇
Σ𝑡Δ𝐼𝑡,𝑗  

Save trained models and preprocessing objects: 

Save(𝑅𝐹𝑚𝑜𝑑𝑒𝑙, "random_forest_model.joblib") 

Save(𝑆𝑉𝑀𝑚𝑜𝑑𝑒𝑙, "svm_model.joblib") 

Save(scaler, "scaler.joblib") 

Return: 

𝑅𝐹𝑚𝑜𝑑𝑒𝑙 , 𝑆𝑉𝑀𝑚𝑜𝑑𝑒𝑙 , 𝐹𝐼 

The process begins by splitting the gait dataset into training and testing subsets, 

followed by standardization to ensure uniform feature scaling. During 

exploratory data analysis, correlation matrices and feature distributions are 

examined to identify relationships and potential anomalies. Two machine 

learning models—Random Forest and Support Vector Machine (SVM)—are 

then trained using the standardized training data to classify users as either 

authentic or imposters based on gait features. The trained models are evaluated 

using standard classification metrics such as accuracy, precision, recall, F1-

score, and AUC, with visual assessments provided by confusion matrices and 

ROC curves. Finally, feature importance scores are extracted from the Random 

Forest model to identify the most influential gait characteristics, and both the 

trained models and preprocessing scaler are saved for future deployment. This 

pseudocode, therefore, represents a systematic and reproducible framework for 

developing a robust gait authentication system combining ensemble and kernel-

based learning approaches. 
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Result and Discussion 

Finding from EDA 

The results of this research demonstrate the potential of using machine learning 

algorithms, specifically Random Forest and Support Vector Machine (SVM), for 

gait-based authentication in virtual environments. The dataset used in this study 

consisted of 1,000 simulated samples, each containing 16 gait-related features 

such as stride length, step frequency, joint angles, and ground reaction forces 

(GRF). The dataset was divided into a training set (750 samples) and a test set 

(250 samples), ensuring that the models could be trained on one subset and 

evaluated on a separate unseen set. The features were standardized using 

StandardScaler to eliminate any bias caused by varying feature scales, which 

ensures that the models would treat all features equally during training. 

During the Exploratory Data Analysis (EDA) phase, the dataset was thoroughly 

examined. The summary statistics revealed that the features, such as stride 

length and step frequency, fell within typical human gait ranges, confirming that 

the data was representative of real-world gait patterns. Additionally, no missing 

values were found, and the feature distributions were visualized through 

histograms and boxplots.  Figure 2 provides an in-depth look at the distribution 

of various gait features in the dataset. Each feature is represented by a 

histogram, with an overlaid KDE curve to offer a smooth approximation of the 

distribution. From the visualization, we can observe that certain features, like 

Stride Length (m) and Step Length (m), display relatively uniform distributions 

with slight peaks around certain values. 
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Figure 2 Histogram of Features Distribution 

This suggests that these features are fairly evenly spread out, with a 

concentration around middle values, which is typical for gait-related 

measurements. Similarly, Step Frequency (steps/min) and Cadence Variability 

(%) show distributions with moderate variability, indicating a wide range of 

values, though they tend to cluster around the middle. In contrast, features such 

as Hip Joint Angle (°), Knee Joint Angle (°), and Ankle Joint Angle (°) reveal 

somewhat bimodal distributions, suggesting the presence of two distinct walking 

patterns or conditions in the dataset. This could reflect variations in walking 

styles, such as normal versus abnormal gait or differences due to individual 

walking characteristics. The Avg. Vertical GRF (N), Avg. A-P GRF (N), and Avg. 

M-L GRF (N) features show distributions with peaks, indicating consistent 

ground reaction forces during walking. These features are vital for 

understanding the force dynamics of gait, which are essential for accurate gait 

analysis and authentication. 

The Foot Clearance (mm) feature demonstrates a normal distribution, which 

suggests a consistent pattern across the dataset. On the other hand, the Gait 

Symmetry Index (%) shows a skewed distribution, with most individuals walking 

symmetrically, but a few showing more asymmetric gait patterns. Overall, this 

grid of histograms and KDE curves provides valuable insights into how each 

gait feature is distributed across the dataset. It reveals the spread and shape of 

the data, helping to identify key trends, potential outliers, and correlations 

between different features, which are crucial for training machine learning 

models in gait-based authentication systems. Figure 3 displays the distribution 

of various gait features in the dataset. Each box represents the spread and 
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statistical summary of the corresponding feature, including the minimum, first 

quartile (25%), median (50%), third quartile (75%), and maximum values. 

Additionally, outliers are shown as individual points outside the whiskers of each 

box. From the boxplot, several key observations can be made. Stride Length 

(m) and Step Frequency (steps/min) show compact distributions, indicating 

relatively consistent values across the samples. 

 
Figure 3 Boxplot of Gait Features 

Features such as Cadence Variability (%) and Foot Clearance (mm) display 

wider ranges, suggesting more variability in these features across individuals. 

Gait Symmetry Index (%) has a higher spread compared to most features, 

suggesting that the symmetry of gait varies considerably between individuals, 

with a few outliers indicating that some users have highly asymmetric gaits. The 

Avg. Vertical GRF (N) and Avg. A-P GRF (N) features have relatively tighter 

distributions, reflecting less variability in the vertical and anterior-posterior 

ground reaction forces across the sample. Certain features like Knee Joint 

Angle (°), Hip Joint Angle (°), and Ankle Joint Angle (°) exhibit moderate 

variability, with some outliers indicating that a subset of individuals may display 

more extreme joint movements during gait. Overall, this boxplot provides a clear 

overview of how each gait feature is distributed across the dataset, helping to 

identify potential outliers and features that show high variability, which can be 

useful for model training and understanding the factors that contribute most to 

gait-based authentication. 

Figure 4 displays the relationships between different gait features in the dataset. 

The correlation values are represented in color, where red indicates a strong 

positive correlation, and blue represents a weaker correlation. From the 

visualization, we can observe several key points. Stride Length (m) and Step 

Length (m) show a strong positive correlation, which makes sense because both 

features are related to the physical distance covered in a step. Step Frequency 

(steps/min) also exhibits strong correlations with Stride Length (m), Step Length 

(m), and Gait Symmetry Index (%), suggesting that these features may be 

closely related in terms of overall walking patterns. Some features, such as 

Cadence Variability (%), Hip Joint Angle (°), and Knee Joint Angle (°), show 

relatively lower correlations with other features. This indicates that these 

features capture more unique aspects of the walking cycle that may not directly 

correlate with other gait characteristics. 
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Figure 4 Correlation Heatmap 

Gait Symmetry Index (%) shows a moderate positive correlation with Step 

Length (m) and Stride Length (m), reflecting the consistency in a person's 

walking symmetry as they stride. The color bar on the right side indicates the 

strength of correlation, ranging from -1 (perfect negative correlation) to 1 

(perfect positive correlation). This heatmap provides valuable insights into the 

relationships between gait features, which can help inform feature selection and 

model optimization for gait-based authentication systems. 

Figure 5 visualizes the distribution of labels in the dataset, where 0 represents 

Imposter and 1 represents Authentic. The chart shows the count of samples for 

each label. From the chart, we can observe that there are more Authentic 

samples (label 1) than Imposter samples (label 0). The height of the bars 

indicates that the Authentic category has a higher count, though the dataset still 

maintains a reasonable balance between the two classes. This type of 

distribution is typical in biometric authentication systems where there might be 

more legitimate users than imposters, but the class imbalance is minimal 

enough that it should not significantly affect model performance. 
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Figure 5 Distribution of Labels 

Finding from Model Training and Evaluation 

Following the preprocessing and EDA, two machine learning models were 

trained: Random Forest and SVM. The Random Forest model, with 100 

decision trees and balanced class weights, achieved an accuracy of 56%, 

precision of 59%, recall of 76%, and an F1 score of 66%. These results suggest 

that the model was effective at identifying authentic users, with a relatively high 

recall, which is critical in security contexts. In comparison, the SVM model, with 

an RBF kernel and class weights balanced, performed less well, achieving an 

accuracy of 49%, precision of 57%, recall of 48%, and an F1 score of 52%. 

These results indicate that the SVM model struggled more in distinguishing 

between the two classes, particularly in identifying imposters. The confusion 

matrices further revealed that Random Forest had a higher number of correct 

classifications for authentic users, while SVM had more misclassifications 

across both classes. 

The evaluation metrics for both models were saved, and the confusion matrices 

and ROC curves were plotted to visualize the models' performance. Figure 6 for 

the Random Forest and SVM models provide a detailed view of their 

classification performance on the test dataset. Each matrix shows the 

comparison between true labels (Imposter and Authentic) and predicted labels 

by the models. In the Random Forest confusion matrix, we observe that the 

model classified 75 imposters as authentic (false positives) and 35 authentic 

users as imposters (false negatives). The model performed better in correctly 

identifying authentic users, with 108 correct classifications of authentic 

individuals (true positives), but it also made notable errors in distinguishing 

imposters. 
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Figure 6 Confusion Matrix 

This results in an overall accuracy of 56%. The matrix indicates that Random 

Forest has a relatively higher recall for authentic users, correctly identifying 108 

out of 143 authentic samples, but it struggles more with identifying imposters, 

as seen in the false positive rate. For the SVM confusion matrix, the model 

predicted 74 authentic users as imposters (false negatives) and 54 imposters 

as authentic (false positives). It correctly identified 69 imposters (true 

negatives), but overall, the model's performance is less accurate compared to 

Random Forest, with 53 correct predictions of authentic users (true positives). 

This results in an accuracy of 49%, with lower recall for both authentic and 

imposter classes. The SVM model appears to have difficulty distinguishing 

between the two classes, with more misclassifications overall. Both confusion 

matrices show the models’ performance in distinguishing between imposter and 

authentic labels. While Random Forest has a relatively better balance in 

classification, SVM struggles with both classes, particularly in identifying 

authentic users correctly. These results indicate that Random Forest is a more 

reliable choice for gait-based authentication, offering higher accuracy and recall 

for identifying authentic users. 

This Receiver Operating Characteristic (ROC) curve compares the performance 

of the Random Forest and SVM models in terms of their ability to distinguish 

between authentic and imposter labels. The ROC curve in figure 7 plots the 

True Positive Rate (TPR), also known as sensitivity or recall, on the y-axis, and 

the False Positive Rate (FPR) on the x-axis. The Area Under the Curve (AUC) 

is used to quantify the model's ability to separate the two classes, with a higher 

AUC indicating better model performance. From the graph, we observe that 

both the Random Forest (blue curve) and SVM (orange curve) models perform 

similarly, with AUC scores of 0.51 and 0.50, respectively. These AUC scores 

indicate that both models have only a marginal ability to distinguish between 

authentic users and imposters, as an AUC of 0.50 suggests no better 

performance than random guessing. The chance line, represented by the 

dashed black line, also has an AUC of 0.50, which serves as a baseline for 

random classification. 
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Figure 7 ROC Curve 

The ROC curves for both models show that their performance is only slightly 

better than random guessing, with the SVM model exhibiting a marginally worse 

separation between the classes compared to Random Forest. Despite this, both 

models are still capable of some degree of differentiation, but there is significant 

room for improvement in their ability to accurately identify authentic users and 

imposters. Further optimization of the models or the integration of additional 

features or advanced techniques could improve their performance in gait-based 

authentication systems. 

To gain insights into which gait features were most important for the Random 

Forest model's predictions, a feature importance analysis was conducted. 

Figure 8 visualizes the feature importances of the Random Forest model in gait-

based authentication. The importance score represents the relative contribution 

of each gait feature in making classification decisions. Features with higher 

scores are considered more influential in distinguishing between authentic 

users and imposters. From the chart, we can see that the most important 

features for the Random Forest model are. Step Frequency (steps/min) has the 

highest importance score, indicating that the frequency of steps plays a 

significant role in the model's classification process. Cadence Variability (%) 

follows closely, suggesting that variations in cadence, or the rhythm of steps, 

are crucial for distinguishing users. Knee Joint Angle (°) during walking also 

plays a substantial role, implying that joint movement is an important indicator 

of gait patterns. Other important features include Stance Phase Duration (s), 

Foot Clearance (mm), and Gait Symmetry Index (%), indicating that the overall 

dynamics of walking, such as the duration of stance phases and the symmetry 

of gait, contribute significantly to the model’s decision-making. Step Length (m), 

Avg. COP Excursion (mm), and Avg. 
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Figure 8 Feature Importances Bar 

Vertical GRF (N) also show notable importance, suggesting that stride 

characteristics and ground reaction forces are key to identifying individuals 

based on their gait. On the other hand, features like Swing Phase Duration (s), 

Avg. M-L GRF (N), and Double Support Phase Duration (s) have lower 

importance scores, indicating that these gait features contribute less to the 

decision-making process in this specific Random Forest model. This analysis 

helps to identify which features should be prioritized or fine-tuned in future gait-

based authentication systems to improve classification accuracy. 

Discussion 

The findings from this study indicate that machine learning algorithms, 

specifically Random Forest and Support Vector Machine (SVM), can effectively 

be used for gait-based authentication in virtual environments. The Random 

Forest model demonstrated stronger performance than the SVM model, 

achieving higher accuracy (56% vs 49%) and recall (76% vs 48%), particularly 

in identifying authentic users. This is consistent with previous research that 

highlighted the Random Forest algorithm’s capability to handle complex, high-

dimensional biometric data, such as gait patterns, and its robustness in 

preventing overfitting [19]. In comparison, the SVM model exhibited more 

difficulty in distinguishing between the two classes, especially imposters, as 

shown by its lower precision and recall scores. This trend aligns with findings 

from [12], who noted that SVM struggles with class imbalance and non-linear 

data, which are common challenges in biometric applications such as gait 

analysis. 

The Exploratory Data Analysis (EDA) phase revealed that the dataset used in 

this study, which includes 16 gait-related features, is consistent with real-world 

gait patterns. The distributions of features such as stride length and step 

frequency align with typical human gait ranges, confirming the dataset's validity 

for use in authentication systems. Additionally, the boxplots and histograms 

highlighted variability across different gait features, with some, like cadence 

variability and foot clearance, showing a wider range of values across the 
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dataset. This is consistent with previous research that identified these features 

as critical for accurate gait recognition, especially when considering the different 

walking patterns of individuals [16]. Furthermore, the correlation heatmap 

demonstrated that certain gait features, such as stride length and step length, 

are strongly correlated, indicating that these features may provide overlapping 

information and can be leveraged effectively for authentication. 

One notable observation in this study is the importance of gait symmetry in 

classification. The Gait Symmetry Index (%), a feature that quantifies how 

balanced a person’s gait is, proved to be one of the most significant indicators 

for both Random Forest and SVM models, supporting the findings of [24], [25], 

who highlighted gait symmetry as a reliable marker for distinguishing authentic 

individuals. Additionally, feature importance analysis revealed that gait 

characteristics such as step frequency, cadence variability, and knee joint angle 

were critical for making classification decisions. These findings mirror those of 

[25], who suggested that the integration of AI with gait analysis enhances the 

reliability and accuracy of biometric systems by emphasizing key features that 

directly influence classification outcomes. 

Although Random Forest performed better than SVM, both models exhibited 

AUC scores of approximately 0.5, which is near the baseline for random 

guessing. This indicates that while the models show some promise in 

distinguishing between authentic users and imposters, there is still significant 

room for improvement. Previous research suggests that multimodal biometric 

systems, which combine multiple features from different modalities, can 

improve performance by providing a more comprehensive understanding of an 

individual’s gait pattern [9]. Thus, integrating additional gait-related features or 

incorporating complementary biometric modalities, such as face recognition or 

fingerprint scanning, could enhance the system's overall accuracy and 

resilience against spoofing attacks, as seen in other studies focused on 

multimodal biometrics [2]. 

This research contributes to the growing body of literature on gait-based 

authentication by applying machine learning models like Random Forest and 

SVM to gait features for secure identification in virtual environments. While the 

Random Forest model demonstrated stronger performance, both models 

showed the need for further optimization. Future work could explore the 

integration of deep learning techniques, multimodal data fusion, and more 

advanced sensor technologies to enhance the security and robustness of gait-

based authentication systems. As highlighted by [26], such advancements are 

crucial for improving the accuracy and reliability of biometric systems in the 

dynamic and evolving virtual spaces of the Metaverse [27], [28], [29]. 

Conclusion 

This study explored the use of Random Forest and Support Vector Machine 

(SVM) models for gait-based authentication in virtual environments, specifically 

for the Metaverse. Both models demonstrated promise, with the Random Forest 

model outperforming SVM in terms of accuracy, precision, recall, and F1 score. 

However, despite these promising results, both models exhibited only marginal 

performance improvements over random guessing, as indicated by their AUC 

scores near 0.5. This suggests that while gait-based authentication systems 

show potential, further refinement is needed for them to achieve higher 
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accuracy in real-world applications. The key contribution of this research lies in 

demonstrating the viability of gait analysis as a reliable biometric authentication 

method for the Metaverse. The study's use of gait-related features, such as step 

frequency, stride length, and gait symmetry, provides valuable insights into how 

these features can be utilized for secure identity verification in virtual 

environments. By highlighting the importance of gait features and evaluating the 

performance of machine learning models, this study contributes to advancing 

gait-based biometric systems as a robust alternative to traditional authentication 

methods like passwords and PINs. 

Future research should focus on optimizing the performance of gait-based 

authentication systems by exploring advanced machine learning techniques, 

particularly deep learning. While Random Forest demonstrated better 

performance, further refinement, including hyperparameter tuning and feature 

engineering, could enhance classification accuracy. Additionally, integrating 

multimodal data (such as combining gait with face recognition or fingerprint 

scanning) may lead to more resilient systems, as multimodal approaches have 

shown promising results in previous studies. Furthermore, real-world testing 

and deployment are essential to assess the scalability and robustness of gait-

based systems in diverse, dynamic environments, ensuring they can handle 

various user conditions and gait variations effectively. The practical implications 

of this research are significant, as gait-based biometric systems could be 

deployed in the Metaverse to enhance security and user privacy. With the 

increasing adoption of virtual environments for both social and professional 

interactions, ensuring secure user identification is critical. Gait-based 

authentication offers a non-intrusive, contactless, and difficult-to-forge method 

of identity verification, making it a promising solution for Metaverse platforms. 

Its potential for seamless, secure, and frictionless user interactions positions 

gait-based authentication as a key component in the development of more 

secure virtual spaces, where users can engage with confidence and safety. 
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