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ABSTRACT 

This research explores the application of data mining techniques, specifically 

XGBoost, to predict game pricing trends and optimize discount strategies within the 

digital gaming market. Game prices are influenced by various factors, including 

production costs, market demand, and promotional strategies. This study analyzes 

historical pricing data from multiple online stores to identify key pricing patterns and 

factors that influence price changes over time. The model developed in this study 

predicts game prices by incorporating features such as retail price, discount 

percentages, past price trends (lags), and other time-based features. The findings 

reveal that retail price and recent price trends (e.g., 7-day rolling averages) are the 

most influential features in predicting future prices. Additionally, discount strategies 

significantly impact game sales, with certain discount ranges showing higher 

effectiveness in driving consumer purchases. The model also demonstrates 

variability in prediction accuracy, particularly at higher price points, highlighting the 

challenges of capturing complex price fluctuations in a dynamic digital marketplace. 

The significance of this study extends to the Metaverse market, where pricing and 

the use of digital assets like non-fungible tokens (NFTs) play a critical role. The 

model's application could aid in optimizing pricing strategies within virtual 

economies, enhancing both the consumer experience and retailer profitability. 

Future work includes integrating additional features such as user reviews and 

exploring its application to Metaverse game platforms. The practical implications of 

this research are significant for online game retailers looking to leverage data-driven 

insights for more effective pricing and promotional strategies. 

Keywords Price Prediction, Discount Optimization, Digital Gaming Market, Data 

Mining, Metaverse Market 

INTRODUCTION 

The rise of the metaverse and virtual economies is changing the fundamentals 

of digital game pricing by integrating innovative pricing models and discount 
strategies that vary significantly across online platforms. In the current digital 
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age, game developers and distributors are not only relying on traditional price-

setting but also on dynamic mechanisms that account for consumer behavior 

in virtual environments [1], [2]. As digital economies evolve, virtual game 

environments are increasingly relying on concepts from the metaverse, where 
digital currencies and tokenized assets influence pricing strategies and 

consumer perception of value. This transformation has driven game companies 

to reexamine their pricing mechanisms, tailoring discount structures to 

enhance consumer engagement and maximize revenue. 

Empirical studies have shown that value-informed pricing strategies play a 

crucial role in determining the price of virtual digital products, such as in-game 

accessories and downloadable content [3]. In highly interactive environments 

like Chinese MMORPGs, pricing is set based on consumer value perception 
and competitive dynamics, with game prices fluctuating according to intrinsic 

player demand and market competition. Concurrently, research comparing 

digital channels has demonstrated that discount effects are not uniform; for 

example, the response to price discounts varies across PC, app, and mobile 

website channels, with each channel exhibiting distinct consumer purchasing 

behaviors in reaction to discount offers [4]. This channel-specific fluctuation 
implies that game pricing strategies must be optimized for each platform to 

capture the digital economy’s inherent heterogeneity. 

Furthermore, large-scale experimental evidence underscores that discounting 

strategies, such as quantity discounts, can influence consumer behavior and 

overall revenue outcomes in digital gaming markets. A significant study 
highlighted a randomized pricing experiment involving over 14 million online 

game users, demonstrating that quantity discounts profoundly affected 

purchase volumes, thus reinforcing the importance of strategically calibrated 

discount policies in virtual economies [5]. These findings suggest that both 

game pricing fluctuations and the design of discount schemes are intricately 

tied to consumer behavior, competitive market forces, and the technological 

evolution underpinning the metaverse.  

The objective of this research is to predict game price trends and optimize 

discounts using data mining techniques. By applying advanced algorithms like 

XGBoost and time-series analysis, the study aims to uncover patterns in pricing 

data and provide accurate forecasts for future prices. This predictive model will 

help in understanding how video game prices fluctuate over time, taking into 

account seasonal variations, store-specific strategies, and other influencing 

factors. The significance of this research lies in its ability to offer valuable 

insights into the pricing trends within the Metaverse market. As the virtual 

economy grows, understanding the dynamics of pricing across different 
platforms can provide both consumers and store owners with strategic 

advantages. Consumers can make more informed decisions on when to 
purchase games based on predicted price reductions, while store owners can 

optimize their discount strategies to maximize sales and maintain competitive 

pricing. This paper primarily focuses on price prediction and discount 
optimization for video games across major online stores. The scope includes 

analyzing historical price data from well-known platforms, identifying key 



 International Journal Research on Metaverse 

 

Maidin and Yahya (2025) Int. J. Res. Metav. 

 

335 

 

 

factors influencing price changes, and developing models to predict future 

trends. By examining the discounting strategies of various stores, this research 

aims to provide a comprehensive approach to optimizing pricing in the digital 

gaming industry, with an eye towards the growing Metaverse market. 

Literature Review 

Overview of Price Trend Analysis in E-Commerce 

Recent studies on price trend analysis in e-commerce have highlighted the 
growing importance of applying advanced statistical and machine learning 

techniques to forecast the evolution of prices over time. These studies focus 
on capturing the volatility inherent in online pricing strategies, while also 

addressing the underlying macroeconomic and market-specific factors that 
drive price changes. Understanding these factors is crucial for businesses as 

they seek to optimize pricing decisions and respond effectively to market 

fluctuations. 

One of the most prominent areas of research in this field is dynamic pricing. 

Dynamic pricing involves adjusting prices in real-time based on various factors 

such as demand fluctuations, inventory levels, and competitive pressures. A 
bibliometric analysis of dynamic pricing research shows a marked increase in 

academic interest since the early 2000s, with a particularly sharp rise in 
publications in 2021 [6]. This surge in research reflects the growing recognition 

of dynamic pricing as a key component of e-commerce strategies, enabling 

retailers to remain competitive by responding swiftly to changes in the 
marketplace. The bibliometric approach used in these studies offers a 

comprehensive mapping of the evolving research landscape and identifies 

emerging challenges in the dynamic pricing domain. 

Alongside dynamic pricing studies, various forecasting models have been 
developed to predict how product prices evolve over time. One such model, 

proposed by [7], integrates Autoregressive Integrated Moving Average (ARIMA) 
with Google Trends data to predict future price trends on e-commerce 

platforms. This approach highlights the power of time-series forecasting 
techniques in predicting price changes, while also emphasizing the value of 

incorporating external digital signals—such as online search trends—into 
pricing models to enhance their accuracy. Similarly, [8] developed a forecasting 

method based on Gaussian processes, which incorporates factors like seller 
reputation and sales volume to predict price dispersion and future price 

movement in the context of Chinese cross-border e-commerce. These 

methodologies provide strong frameworks for understanding price trends and 

offer valuable insights into the future of pricing strategies. 

In addition to market-specific dynamics, macroeconomic factors also play a 

significant role in shaping e-commerce pricing trends. For example, research 
by [9] on exchange rate pass-through effects in Brazilian e-commerce 

demonstrates how fluctuations in foreign exchange rates can alter the pricing 
structures of online retailers. These fluctuations influence the cost of imported 

goods, which, in turn, impacts the final price paid by consumers. This 
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macroeconomic perspective adds an extra layer of complexity to dynamic 

pricing models, as it underscores the importance of considering broader 

economic conditions when developing pricing strategies for e-commerce 

platforms. 

Time-Series Forecasting 

Time-series forecasting for price prediction has been widely explored across 

various industries, including digital advertising, financial markets, commodity 

pricing, and online auctions. Early studies, such as [10], demonstrate the value 
of time-series analysis in digital signage advertising by modeling environmental 

factors and audience attention changes, which influence pricing decisions. 

Similarly, in financial time-series forecasting, [11] address the challenges 

posed by low signal-to-noise ratios and the dynamic inter-asset relationships, 
emphasizing that a successful forecasting framework requires understanding 

the properties of time-series data such as linearity, stationarity, and volatility. 
These studies highlight the critical role of time-series analysis in capturing the 

underlying price dynamics across various sectors. 

Classical time-series models, such as ARIMA and exponential smoothing, have 

long been used to forecast prices in a wide range of markets. For example, [12] 
successfully applied ARIMA models for forecasting day-ahead electricity 

market prices, while [13] utilized similar methods for short-term agricultural 

price indices forecasting. Additionally, [14] demonstrated that Holt’s double 

exponential smoothing method could accurately predict gold bullion prices, 

illustrating the effectiveness of smoothing techniques in capturing short-term 
trends. These traditional statistical models, which also include semiparametric 

regression analysis for dynamic auction price predictions [15], prove to be 

versatile tools in a variety of forecasting scenarios, emphasizing their continued 

relevance in modern forecasting tasks. 

Advancements in machine learning and deep learning have significantly 

enhanced time-series forecasting for price prediction. Research [16], [17] 

employed Long Short-Term Memory (LSTM) networks to capture nonlinear 

temporal dependencies in stock market data, achieving higher accuracy than 

traditional models. Similarly, [18] developed a heterogeneous Gated Recurrent 

Unit (GRU) neural network with an attention mechanism to predict fluctuations 
in livestock product prices, demonstrating the advantages of deep learning in 

handling complex, multi-scale price movements. Additionally, [19] highlighted 

the effectiveness of recurrent neural networks in predicting stock trends, while 

[20], [21] incorporated convolution-based filtering techniques to isolate latent 

components in crude oil price series. These innovations reflect the growing 

potential of deep learning models in price prediction tasks that require handling 

complex patterns and long-term dependencies. 

Beyond these conventional and advanced methods, fuzzy logic has also 
emerged as a powerful tool for modeling price uncertainty. Research [22] 

compared fuzzy time-series models to traditional forecasting techniques for 

composite stock price indices, demonstrating that linguistic-based forecasting 
provides added flexibility in scenarios where data patterns are ambiguous and 
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variability is high. This approach, alongside hybrid forecasting techniques, 

emphasizes the importance of flexibility in modeling uncertain price 

movements. Studies incorporating exponential smoothing and hybrid methods 

reveal that using an ensemble of time-series forecasting techniques can be 
particularly effective in addressing the diverse characteristics of pricing data 

across different markets. 

XGBoost for Price Prediction 

XGBoost, an ensemble learning algorithm that leverages gradient boosting 
methods over decision trees, has gained widespread attention in price 

prediction due to its exceptional accuracy and computational efficiency in 

forecasting numerical values. By systematically reducing bias and variance in 

predictions, XGBoost outperforms many traditional machine learning 
algorithms, making it an ideal choice for various pricing applications. This 

robustness in prediction accuracy is particularly useful in industries where 

timely and precise pricing forecasts are crucial for decision-making [23], [24]. 

Beyond financial markets, XGBoost has proven its effectiveness in other 
domains, such as environmental economics and digital asset markets. 

Research [25] applied an extreme gradient boosting model optimized through 
the whale optimization algorithm to forecast carbon prices, achieving superior 

results compared to several benchmark models. Additionally, [2] introduced a 

hybrid model that first processed carbon price signals before inputting them 

into an XGBoost framework, leading to a notable reduction in prediction errors. 

These studies demonstrate that XGBoost can effectively handle complex, high-
dimensional datasets and is adaptable across a wide range of pricing 

scenarios. 

Metaverse and Digital Economy Impact 

The rise of the metaverse and virtual economies has fundamentally reshaped 

the landscape of digital product pricing. This transformation introduces new 

digital assets, revised business models, and innovative pricing mechanisms 

that integrate traditional economic principles with digital innovation. Virtual 

economies increasingly rely on digitized currencies, tokenized assets, and 

dynamic market interactions to determine product value. The integration of 

digital legal currencies and non-fungible tokens (NFTs) has catalyzed a shift 
from conventional pricing methodologies towards value-based and 

opportunity-driven pricing strategies. In this environment, prices are no longer 

solely determined by production costs or consumer demand but are also 

influenced by factors like digital scarcity, network effects, and cross-platform 

interoperability [26], [27]. 

Metaverse platforms are central to these pricing transformations by creating 
interoperable ecosystems that support both user-generated content and 

platform-mediated pricing mechanisms. Research [28] conceptualize 
metaverse platforms as meta-ecosystems where real-time rendered 3D virtual 

worlds and digital environments converge, fostering increased consumer 

engagement and co-creation of goods. This platform-centric view underscores 
that pricing strategies in digital markets are deeply intertwined with the 
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metaverse's underlying architecture. In these environments, platform owners 

and orchestrators have significant influence over market dynamics, shaping 

how products are priced and exchanged. Moreover, the concentration of 

power in the hands of major technology companies active in extended reality 
(XR) raises concerns about pricing transparency and the potential for 

monopolistic behavior, which could affect competitive pricing strategies. 

The pricing of digital products in the metaverse is also influenced by consumer 

perceptions, digital scarcity, and the provenance of assets. Studies of virtual 
marketplaces have shown that these factors significantly contribute to how 

value is ascribed to digital goods. For instance, the pricing of digital game 

accessories and virtual merchandise is increasingly driven by consumer 

engagement metrics and perceived exclusivity. This trend is further amplified 
by the decentralized and borderless nature of metaverse platforms, where 

digital scarcity and exclusivity are major determinants of value. The emergence 

of tokenized assets has led to the redesign of traditional discounting and 

pricing models, where algorithms account for network effects and real-time 

market signals to optimize pricing strategies in dynamic virtual economies [26]. 

These developments highlight the need for adaptive pricing strategies capable 

of responding to rapidly changing market conditions within the metaverse. 

Furthermore, the advent of these digital pricing mechanisms introduces a shift 

in how businesses approach pricing strategy. Unlike traditional e-commerce, 

where pricing is influenced primarily by cost-plus models or competitive 

benchmarking, the metaverse demands more dynamic and complex pricing 
approaches. Platforms must take into account not only the digital scarcity and 

perceived value of assets but also the governance structures that influence the 

ownership and distribution of digital products. These new pricing models also 

emphasize consumer co-creation, where the involvement of users in shaping 

the product or asset can influence its market value. This represents a 

significant departure from conventional pricing models and signals the need 

for ongoing innovation in digital pricing strategies. 

Method 

The workflow of the proposed Time-Series XGBoost Regression (TS-XGBR) 
model is illustrated in figure 1. The process begins with data preprocessing, 

where the dataset containing time, title, storeID, price, retailprice, and savings 
is loaded, converted to datetime format, and sorted chronologically to preserve 

temporal order. Missing values are then handled through forward filling or row 

removal when critical data are absent. Once the dataset is cleaned, feature 

engineering is performed to extract lag features, autocorrelation coefficients, 

and the Price Momentum Ratio (PMR), along with temporal attributes such as 

day of the week, month, and year. These features are compiled into a feature 
matrix 𝑋and a target vector 𝑦, which are used to train an XGBoost regressor 

under a time-aware cross-validation scheme. The model is optimized and 
evaluated iteratively, where performance assessment determines whether 

retraining is necessary. If the results meet the desired criteria, the final trained 

model and feature importance metrics are saved for interpretation and 
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deployment. 

 
Figure 1 Proposed Time-Series XGBoost Regression (TS-XGBR) 

Data Preprocessing 

The process of predicting video game price trends across multiple online 

stores begins with a detailed data preprocessing stage, designed to ensure 

data integrity and temporal coherence. The dataset consists of essential 

columns such as Time, title, storeID, price, retailprice, and savings. To facilitate 
temporal analysis, the Time column is converted into a datetime object, 

enabling chronological operations such as lag creation and time-based 
resampling. The dataset is then sorted according to steamAppID, storeID, and 

Time to maintain sequential order, which is vital for modeling time-dependent 

variables. Missing data are handled using forward filling, a method that 

propagates the most recent known value to subsequent missing entries, 

thereby preserving price continuity within each game-store combination. If 

essential information, particularly in price or retailprice, remains unavailable, 
those rows are removed to avoid inconsistencies during model training. This 

process ensures that the temporal relationships between price observations 

are not disrupted, forming a reliable foundation for subsequent analysis. 

Feature Engineering 

Once the data has been cleaned and structured, feature engineering is 

performed to enhance the model’s ability to capture temporal patterns and 
price dynamics. Lag features are created to provide the model with historical 

price information, enabling it to recognize both short-term fluctuations and 
longer-term cycles in the data. These lag features are derived at various 

intervals, such as 1, 3, 7, and 14 days, to represent different temporal horizons. 

To further quantify the relationship between current and past prices, an 
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autocorrelation coefficient is introduced. This metric measures the degree of 

similarity between a time series and a lagged version of itself and is expressed 

as 

𝜌𝑘 =
∑ (𝑝𝑡 − 𝑝̄)(𝑝𝑡−𝑘 − 𝑝̄)

𝑇

𝑡=𝑘+1

∑ (𝑝𝑡 − 𝑝̄)2
𝑇

𝑡=1

 (1) 

𝜌𝑘indicates the strength of correlation between the price at time 𝑡and its value 

𝑘periods earlier. A high 𝜌𝑘suggests strong temporal persistence, implying that 
past prices significantly influence future values. Additionally, a distinctive 

metric known as the Price Momentum Ratio (PMR) is introduced to measure 

short-term acceleration or deceleration in pricing movements. It is defined as 

𝑃𝑀𝑅𝑡 =
𝑝𝑡 − 𝑝𝑡−𝑘
𝑝𝑡−𝑘

 (2) 

𝑃𝑀𝑅𝑡represents the relative rate of change in price compared to a previous 
point 𝑘steps back. This ratio allows the model to capture dynamic price 

behavior such as discounts, flash sales, or gradual price increases. 

Temporal features such as dayofweek, month, year, and weekofyear are 

extracted to capture seasonal patterns and cyclical effects in price trends, 
which are common in digital game markets influenced by events like sales 

periods or holiday seasons. 

Model Training 

The cleaned and feature-enhanced dataset is then used to train an XGBoost 

regression model, selected for its efficiency and ability to model nonlinear 

interactions among temporal features. The algorithm constructs an ensemble 

of decision trees through gradient boosting, minimizing a regularized objective 
function that balances accuracy and model complexity. Hyperparameters such 

as learning rate (0.05), maximum depth (7), and the number of estimators (500) 

are optimized to achieve stable and accurate results. 

To evaluate the model reliably, a TimeSeriesSplit cross-validation strategy is 
employed, ensuring that the temporal order of the data is preserved. Each 

validation fold uses earlier data for training and later data for testing, thereby 

simulating realistic forecasting scenarios and avoiding data leakage. 

Model Evaluation 

After training, the model’s predictive performance is assessed and interpreted 

through a combination of quantitative metrics and qualitative visualization. 

Instead of relying solely on general metrics, deeper analysis is conducted using 

XGBoost’s internal feature importance scores, which indicate how much each 
feature contributes to reducing prediction error. These insights help identify the 

most influential predictors in price estimation, typically including retailprice, 

PMR, and the autocorrelation terms. 

Visual assessment complements the numerical evaluation through scatter 
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plots of predicted versus actual prices, residual plots showing error 

distributions, and time-series plots comparing observed and predicted price 

trends. These analyses provide a clear understanding of model accuracy and 

stability over time, while also revealing potential temporal patterns or 

deviations that may require model refinement. 

Algorithm 1 Time-Series XGBoost Regression (TS-XGBR) 

Let the dataset be denoted as 

𝐷 = {(𝑡𝑖 , title𝑖 , storeID𝑖 , 𝑝𝑖 , 𝑟𝑖 , 𝑠𝑖) ∣ 𝑖 = 1,2, . . . , 𝑁} 
where 𝑡𝑖is the timestamp, 𝑝𝑖is the price, 𝑟𝑖is the retail price, and 𝑠𝑖 is the savings value. 

Step 1: Data Preprocessing 

1. Convert 𝑡𝑖 → datetime(𝑡𝑖)for all 𝑖. 

2. Sort 𝐷by (steamAppID,storeID, 𝑡𝑖). 

3. Handle missing values using forward filling: 

𝑝𝑖 = {
𝑝𝑖 , if 𝑝𝑖 ≠ ∅

𝑝𝑖−1, if 𝑝𝑖 = ∅
 

Remove all tuples where 𝑝𝑖 = ∅or 𝑟𝑖 = ∅. 

Step 2: Feature Engineering 

For each unique pair (𝑔, 𝑠)∈ (game, store), and for each time index 𝑡: 

• Lag Features: 

𝐿𝑘(𝑝𝑡) = 𝑝𝑡−𝑘 , 𝑘 ∈ {1,3,7,14} 
 

• Autocorrelation Coefficient: 

𝜌𝑘 =
∑ (𝑝𝑡 − 𝑝̄)(𝑝𝑡−𝑘 − 𝑝̄)

𝑇

𝑡=𝑘+1

∑ (𝑝𝑡 − 𝑝̄)2
𝑇

𝑡=1

 

where 𝑝̄ =
1

𝑇
∑ 𝑝𝑡
𝑇
𝑡=1 . 

• Price Momentum Ratio (PMR): 

𝑃𝑀𝑅𝑡 =
𝑝𝑡 − 𝑝𝑡−𝑘
𝑝𝑡−𝑘

, 𝑘 = 1,3,7 

Temporal Features Extraction: 

TimeFeatures(𝑡) = {dayofweek(𝑡),month(𝑡),year(𝑡),weekofyear(𝑡)} 
Construct the feature matrix: 

𝑋 = [𝐿𝑘(𝑝𝑡), 𝜌𝑘 , 𝑃𝑀𝑅𝑡,TimeFeatures(𝑡), 𝑟𝑡, 𝑠𝑡] 
and the target vector: 

𝑦 = [𝑝𝑡] 
Step 3: Model Training 

Split dataset 𝐷into temporally ordered folds: 

{(𝑋𝑡𝑟𝑎𝑖𝑛
(𝑖)

, 𝑦𝑡𝑟𝑎𝑖𝑛
(𝑖)

), (𝑋𝑡𝑒𝑠𝑡
(𝑖)

, 𝑦𝑡𝑒𝑠𝑡
(𝑖)

)}, 𝑖 = 1,2, . . . , 𝑛𝑠𝑝𝑙𝑖𝑡𝑠 

using TimeSeriesSplit such that: 

max⁡(𝑡𝑡𝑟𝑎𝑖𝑛
(𝑖)

) < min⁡(𝑡𝑡𝑒𝑠𝑡
(𝑖)

) 

Train the XGBoost regression model 𝑓𝜃to minimize the regularized objective: 

min⁡
𝜃

[∑𝑙(𝑦𝑖 , 𝑓𝜃(𝑋𝑖))

𝑁

𝑖=1

+∑Ω(𝑓𝑘)]

𝑘
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where 

Ω(𝑓𝑘) = 𝛾𝑇 +
1

2
𝜆 ∥ 𝑤 ∥2 

and 𝑙(𝑦𝑖 , 𝑦̂𝑖) = (𝑦𝑖 − 𝑦̂𝑖)
2. 

Step 4: Model Evaluation 

After training, compute feature importance 𝐼𝑗for each feature 𝑥𝑗 ∈ 𝑋: 

𝐼𝑗 =
1

𝐾
∑Δ𝐿𝑘,𝑗

𝐾

𝑘=1

 

where Δ𝐿𝑘,𝑗represents the average loss reduction contributed by feature 𝑗in tree 𝑘. 

Evaluate prediction quality by comparing: 

𝑦̂𝑡 = 𝑓𝜃(𝑋𝑡) 
with the observed price 𝑦𝑡, and visualize: 

{(𝑡, 𝑦𝑡), (𝑡, 𝑦̂𝑡), (𝑡, 𝑦𝑡 − 𝑦̂𝑡)} 
as time series, scatter plots, and residual plots. 

Step 5: Model Deployment 

Store the final optimized model: 

𝑀∗ = 𝑓𝜃∗(𝑋) 
where 𝜃∗is the parameter set that minimizes validation loss. 

Export both the model and feature importance scores for interpretability and future inference. 

Result and Discussion 

Descriptive Statistics 

The dataset used in this analysis comprises 73,000 observations, each 
corresponding to a price record for a video game across five different online 

stores over a two-year period. The dataset contains essential columns such as 

Time, steamAppID, storeID, price, retailprice, and savings, which track the 

price fluctuations and discounts applied to the games over time. The 

descriptive statistics of the dataset provide valuable insights into the pricing 

patterns and distribution of values. On average, the price of a video game in 

this dataset was $39.52, with retail prices ranging from $20.19 to $69.54. The 

savings, which represent the discount applied to the retail price, had a mean 
value of 6.46%, with the maximum savings reaching up to 75.59%. Notably, 

the majority of the games had no discount applied, as 75% of the records 
showed savings of 0%, indicating that most games were sold at their full retail 

price. This distribution suggests that the dataset captures a wide variety of 

pricing behaviors, from full-price sales to heavily discounted games. 

Figure 2 displays the distribution of game prices in the dataset. The histogram 
represents the frequency of game prices, with a smooth curve (KDE) overlaid 

to show the price distribution more clearly. The prices are concentrated around 

certain values, with noticeable peaks at various price ranges, such as around 

$20, $40, and $60. This suggests that these are common price points for the 

games in the dataset. 
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Figure 2 Distribution of Game Prices 

The KDE curve indicates that the distribution of game prices follows a 

multimodal pattern, with several price ranges exhibiting higher frequencies, 
which could correspond to specific pricing strategies or market trends in the 

digital gaming industry. The spread of prices is quite broad, extending from 
around $5 to just under $70, reflecting a wide variety of games and their 

corresponding pricing structures. Figure 3 shows the distribution of retail 

prices for the games. Similar to figure 2, the histogram illustrates the frequency 

of retail prices across different price intervals, and the smooth curve (KDE) 

helps to visualize the general price trend. The distribution of retail prices has 

clear peaks at certain values, with the most prominent being around $30 and 

$50, indicating that these are the most common retail prices for the games in 

the dataset. 

 
Figure 3 Distribution of Retail Prices 

The KDE curve highlights the bimodal nature of retail prices, where there are 

two primary clusters of prices. This suggests that many games are priced either 
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in the lower range around $20–$30 or the mid-range around $50–$60. This 

pattern may reflect the pricing strategy where the majority of games are priced 

within these two bands, while fewer games are priced at the extremes of the 

spectrum. Figure 4 illustrates the distribution of discounts (or savings) when a 
game is on sale, showing the percentage of discount applied to the retail price. 

The histogram, along with the overlaid smooth curve (KDE), highlights several 

important trends in the data. The most striking feature of the graph is the 

significant concentration of values at 0% savings. This is expected because 
many of the games are likely sold at full price, reflecting that 0% savings 

accounts for the largest portion of the data. 

 
Figure 4 Distribution of Discounts 

The bar at 0% savings is extremely tall, indicating that a substantial number of 

games in the dataset were not discounted at all. For the other discount 

percentages, the graph shows a much more even distribution, with several 

discount ranges between 10% to 75%. While these discounts occur less 

frequently than the 0% discount, the number of games with discounts steadily 

increases as the savings percentage rises, especially between 10% and 30%. 

After this point, the frequency of discounts starts to taper off, with fewer games 
offering higher discounts. The KDE curve illustrates this trend, showing a gentle 

peak at around 15% to 20% savings, before the distribution becomes flatter 
as discounts increase. The presence of a long tail in the distribution suggests 

that some games receive significant discounts, with a few instances of 

discounts reaching as high as 75%. However, these high discounts are 

relatively rare, as indicated by the small number of observations towards the 
right side of the graph. This suggests that while heavy discounts are offered, 

they are not common and might be reserved for specific sales events or 

promotional periods. The overall pattern of this distribution indicates a pricing 

strategy where most games are sold at or near retail price, with moderate 

discounts applied to a smaller subset of games. 

Figure 5 illustrates the average game price over time on a weekly basis. The 
plot shows fluctuations in the average price of games across the two-year 
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period. The price trend is characterized by noticeable peaks and valleys, with 

prices occasionally spiking above $39.8 and then dropping to around $39.2. 

These fluctuations may suggest periodic pricing adjustments, possibly in 

response to factors like sales events, promotions, or market conditions. 

 
Figure 5 Average Game Price Over Time (Weekly) 

The presence of sharp variations indicates that the pricing strategy of the 
games might change frequently, but there is a general stability around a mean 

price close to $39.5. The weekly time interval provides insights into short-term 
trends, capturing the impact of weekly fluctuations in pricing, which could be 

influenced by factors such as store-specific pricing, seasonal changes, or 
consumer demand. Figure 6 provides a comparison of the average game price 

over time for five different stores. 

 
Figure 6 Average Game Price Over Time (Per Store) 

The data is visualized with separate lines for each store, with each line showing 

weekly average price trends over the same two-year period. The graph reveals 

that each store exhibits distinct price trends, with some stores showing higher 

average prices than others, particularly Store E, which consistently has prices 
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above $40. Meanwhile, Store A has the most volatile price fluctuations, 

experiencing more dramatic ups and downs compared to the other stores. The 

different stores display variations in their pricing strategies, which could be 

attributed to factors such as pricing models, promotions, and inventory 
management. The lines for Store B and Store C generally stay closer to the 

average price range, while Store D shows a more consistent pricing pattern. 

This comparative analysis highlights the competitive pricing dynamics among 

different e-commerce platforms and can offer insights into how price 

differentiation is managed across multiple retailers. 

Data Preprocessing and Feature Engineering 

The data preprocessing phase begins with ensuring that the dataset is properly 

structured for time-series analysis. The Time column, which represents the 
date of each price observation, is converted to a datetime object, which is 

essential for handling temporal data correctly. The dataset is then sorted by 
steamAppID, storeID, and Time to ensure the chronological order is 

maintained, as time-series models require data to be processed in a temporal 

sequence. Sorting by steamAppID and storeID ensures that prices and other 

features are handled correctly within each game/store combination, as lag 
features will be calculated based on the previous time periods for the same 

game and store. During this preprocessing stage, missing data is checked, and 

although no missing values were found in the dataset, a robust strategy is in 

place for handling missing values in real-world datasets. Missing values in 

critical columns such as price or retailprice would be dropped, while for less 
critical data, methods like forward filling could be applied to maintain the 

continuity of time-series data. 

Once the data is cleaned and sorted, feature engineering is carried out to 

enhance the model's predictive capabilities. The creation of lag features allows 

the model to take into account the past price and savings data for each game 

and store, which is crucial for predicting future prices based on historical 

trends. Several lag periods were chosen, including 1, 3, 7, and 14 days, to 

capture both short-term and longer-term dependencies in the pricing data. In 

addition to lag features, time-based features were extracted from the Time 

column to capture seasonal and cyclical patterns. These features included the 

day of the week, month, year, day of the year, and week of the year. These 

time-based features are important because pricing behaviors in digital markets 

often follow seasonal trends (e.g., price increases during holidays or special 

events). Furthermore, rolling window features were calculated, such as the 7-

day rolling mean and rolling standard deviation of prices, to capture short-term 

price fluctuations and volatility. These rolling statistics provide the model with 
insights into recent price trends and price variability, which are important for 

making accurate short-term predictions. 

Model Training and Evaluation 

For model training, XGBoost was selected due to its high efficiency and strong 

performance in regression tasks. The model was trained using a 
TimeSeriesSplit cross-validation strategy, which is critical for time-series 
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forecasting tasks. This method ensures that the temporal order of the data is 

respected by splitting the dataset into training and testing subsets, where each 

test set represents a future time period. The model is trained on the training set 

for each fold and evaluated on the corresponding test set. This approach 
simulates a real-world scenario where the model must predict future prices 

based on historical data, making it ideal for time-series forecasting tasks. 

The XGBoost model was configured with a set of parameters that are optimized 

for regression tasks. These parameters include a learning rate of 0.05 to control 
the contribution of each new tree to the final prediction, a maximum tree depth 

of 7 to prevent overfitting, and 500 estimators (or boosting rounds) to ensure 

sufficient learning capacity. The objective function was set to reg:squarederror 

for regression, and RMSE was chosen as the evaluation metric to guide the 
training process. The performance of the model was evaluated using multiple 

regression metrics, including Mean Absolute Error (MAE), Root Mean Squared 

Error (RMSE), and R-squared (R²). The evaluation results for each fold of the 

cross-validation were as follows: in the first fold, the model achieved a MAE of 

3.93, RMSE of 5.56, and R² of 0.60, indicating reasonable performance. The 

second fold showed a slight decline in performance, with a MAE of 7.90, RMSE 
of 10.42, and R² of 0.44. However, in the third fold, the model's performance 

improved, achieving a MAE of 4.52, RMSE of 7.24, and R² of 0.66. The fourth 

and fifth folds demonstrated the best performance, with MAE values of 3.70 

and 4.22, RMSE values of 6.44 and 7.69, and R² values of 0.86 in both cases. 

The average performance across all folds was a MAE of 4.85, RMSE of 7.47, 
and R² of 0.68, indicating that the model was able to explain 68% of the 

variance in the price data with relatively low error metrics. 

Feature Importance Analysis 

After training the model, an important aspect of understanding its decision-

making process is analyzing feature importance. This analysis helps to identify 

which variables contribute the most to the model’s predictions. In the case of 

this model, the retail price emerged as the most important feature, contributing 

53.47% to the prediction of game prices. This result aligns with expectations, 

as the retail price is likely the most significant factor in determining the final 

sale price. The rolling mean of prices over 7 days, labeled as 

price_roll_mean_7, was the second most important feature, with a contribution 

of 26.47%. This suggests that short-term trends in price data play a substantial 

role in the model’s predictions. Other lag features, such as price_lag_14, 

price_lag_7, and price_lag_3, also contributed to the model, with price_lag_14 

being the most influential of the lag features at 7.99%. The time-based 

features, such as dayofweek, month, and year, had lower importance scores, 
but still played a role in capturing seasonal and cyclical pricing patterns. The 

savings features, particularly lagged savings values, also contributed to the 
predictions, though their influence was more modest compared to price-

related features. 

Figure 7 presented is a feature importance plot generated from the XGBoost 
model, displaying the relative importance of each feature used in the model for 

predicting game prices. The bars in the graph represent the relative importance 
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of the features, with the longer bars indicating greater importance. The features 

are ranked based on their contribution to the model's predictions. From the 

graph, it's clear that retailprice is the most influential feature, with the longest 

bar, accounting for the largest proportion of the model's predictive power. This 
aligns with expectations, as the retail price is likely the most significant 

determinant of the final sale price. 

 
Figure 7 Feature Importance Bar 

The rolling mean of price over 7 days (price_roll_mean_7) comes in second, 

reflecting the importance of short-term price trends in predicting future prices. 

The lag features also play a significant role, with price_lag_14 (the price from 
14 days ago) being the third most important feature, followed by price_lag_7, 

price_lag_3, and price_lag_1, which capture increasingly shorter time spans of 
historical data. These lag features allow the model to incorporate the temporal 

dependencies of game prices. Other important features include savings-
related lag features, such as savings_lag_1, savings_lag_3, and savings_lag_7, 

which reflect the impact of previous discounts on current price trends. The 
rolling standard deviation of price over 7 days (price_roll_std_7) also 

contributes significantly to the model, as it helps capture price volatility and 
fluctuations. Time-related features like weekofyear, year, and dayofyear also 

show meaningful contributions, helping the model account for seasonal trends 

and other cyclical effects in pricing. However, features like storeID, 

savings_lag_14, and month have a relatively lower importance, indicating that 
while they contribute to the predictions, their impact is not as strong as the 

price and savings-related features. 

Final Evaluation and Visualizations 

The final evaluation was based on the results from the last fold of the cross-
validation process. A detailed comparison of the predicted prices and actual 

prices was conducted using various visualizations. Figure 8 compares the 

actual prices and predicted prices of games over time, specifically for the last 
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fold of the test set in the cross-validation process. The blue line represents the 

actual prices of the games, while the orange line represents the predicted 

prices generated by the model. From the graph, we can observe that the 

model's predictions generally track the actual prices quite well, especially in 

the mid-range of the price spectrum. 

 
Figure 8 Comparison of Actual vs Predicted Prices 

There are fluctuations where the predicted prices (orange) deviate from the 

actual prices (blue), but the overall trend is similar. These deviations are most 

noticeable during periods of high volatility, where both the actual and predicted 

prices exhibit sharp peaks and valleys. This suggests that while the model 

captures the overall pricing trend, it may struggle with accurately predicting 

extreme fluctuations or sudden spikes in prices. The shaded regions on the 

graph emphasize the areas of deviation between the actual and predicted 

prices. These areas indicate where the model's predictions are not as accurate, 

particularly during the periods of sharp price changes. However, the model 

remains relatively effective in predicting the general price trajectory, especially 

during more stable periods. The results show that the model is capable of 

providing a reasonable estimate of game prices, though there is room for 

improvement, particularly in handling price volatility or sudden market shifts. 

The results indicate that the XGBoost model performed well in predicting video 
game prices, with the best performance observed in the later folds of the cross-

validation. The model's ability to capture price trends, along with its reliance 
on the most relevant features, suggests that it can be effectively used for 

predicting prices in dynamic markets. The feature importance analysis 

provided valuable insights into the factors driving price predictions, particularly 

the significant role of retail prices, lag features, and short-term price trends. 

Overall, the model demonstrated strong predictive power and could be useful 

for pricing strategies in online retail, particularly in dynamic and evolving 

environments such as the metaverse. 

Conclusion 

The analysis of game prices reveals that they fluctuate according to specific 
trends, with periodic price adjustments reflecting market conditions, consumer 
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behavior, and sales events. The exploration of discount strategies 

demonstrates that discounts are a key factor in driving sales, with certain 

discount percentages being more effective in increasing consumer interest. 

The price prediction model, developed using data mining techniques, showed 
a reasonable ability to forecast game prices, though there were challenges in 

predicting prices at the extreme ends of the spectrum. The results highlight 

that game pricing is influenced by both external market factors and internal 

strategies, such as discounts and seasonal promotions. The ability to predict 
game pricing accurately is of significant value for the Metaverse market, where 

virtual goods and services, including games and in-game assets, are 

increasingly traded. Price prediction models can help anticipate price 

fluctuations in this emerging market, allowing game developers, retailers, and 
platform owners to optimize their pricing strategies. Furthermore, such models 

can also help forecast when sales or discounts should be applied to maximize 

revenue or drive user engagement. As virtual economies in the Metaverse 

continue to grow, understanding price dynamics will be essential for 

stakeholders to stay competitive and profitable. This research contributes to 

the field of digital economics by showcasing how data mining techniques, 
specifically XGBoost, can be used to improve the understanding of pricing 

behaviors in virtual economies. By analyzing and predicting price trends in the 

digital game market, the study sheds light on the complexities of virtual product 

pricing, which differs from traditional physical product pricing due to factors 

like digital scarcity, tokenized assets, and real-time market interactions. This 
approach enhances our ability to navigate and optimize pricing models within 

the virtual economy, which is becoming an increasingly significant component 

of the global digital marketplace. 

Further research could expand the scope of the current study by integrating 

additional features, such as user reviews, game ratings, or social media 

sentiment, which may influence game pricing and sales trends. Additionally, 

applying this model to specific Metaverse game platforms could offer more 

detailed insights into how virtual economies operate in these environments. 

The incorporation of these features would likely improve the model's accuracy, 

particularly in predicting the pricing of digital goods and services in a rapidly 

evolving market. The findings from this research offer practical insights for 

online game retailers and other stakeholders in the digital marketplace. By 

leveraging price prediction models, these retailers can optimize their pricing 

strategies to increase sales, attract customers, and enhance their overall 
business performance. Additionally, understanding the impact of discounting 

strategies on game prices can allow retailers to fine-tune their promotional 
activities and better meet consumer expectations. Ultimately, the application 

of these models can lead to a more efficient pricing system, benefiting both 

retailers and consumers in the growing digital economy. 
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