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ABSTRACT

This research explores the application of data mining techniques, specifically
XGBoost, to predict game pricing trends and optimize discount strategies within the
digital gaming market. Game prices are influenced by various factors, including
production costs, market demand, and promotional strategies. This study analyzes
historical pricing data from multiple online stores to identify key pricing patterns and
factors that influence price changes over time. The model developed in this study
predicts game prices by incorporating features such as retail price, discount
percentages, past price trends (lags), and other time-based features. The findings
reveal that retail price and recent price trends (e.g., 7-day rolling averages) are the
most influential features in predicting future prices. Additionally, discount strategies
significantly impact game sales, with certain discount ranges showing higher
effectiveness in driving consumer purchases. The model also demonstrates
variability in prediction accuracy, particularly at higher price points, highlighting the
challenges of capturing complex price fluctuations in a dynamic digital marketplace.
The significance of this study extends to the Metaverse market, where pricing and
the use of digital assets like non-fungible tokens (NFTs) play a critical role. The
model's application could aid in optimizing pricing strategies within virtual
economies, enhancing both the consumer experience and retailer profitability.
Future work includes integrating additional features such as user reviews and
exploring its application to Metaverse game platforms. The practical implications of
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this research are significant for online game retailers looking to leverage data-driven
insights for more effective pricing and promotional strategies.
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INTRODUCTION

The rise of the metaverse and virtual economies is changing the fundamentals
of digital game pricing by integrating innovative pricing models and discount
strategies that vary significantly across online platforms. In the current digital
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age, game developers and distributors are not only relying on traditional price-
setting but also on dynamic mechanisms that account for consumer behavior
in virtual environments [1], [2]. As digital economies evolve, virtual game
environments are increasingly relying on concepts from the metaverse, where
digital currencies and tokenized assets influence pricing strategies and
consumer perception of value. This transformation has driven game companies
to reexamine their pricing mechanisms, tailoring discount structures to
enhance consumer engagement and maximize revenue.

Empirical studies have shown that value-informed pricing strategies play a
crucial role in determining the price of virtual digital products, such as in-game
accessories and downloadable content [3]. In highly interactive environments
like Chinese MMORPGs, pricing is set based on consumer value perception
and competitive dynamics, with game prices fluctuating according to intrinsic
player demand and market competition. Concurrently, research comparing
digital channels has demonstrated that discount effects are not uniform; for
example, the response to price discounts varies across PC, app, and mobile
website channels, with each channel exhibiting distinct consumer purchasing
behaviors in reaction to discount offers [4]. This channel-specific fluctuation
implies that game pricing strategies must be optimized for each platform to
capture the digital economy’s inherent heterogeneity.

Furthermore, large-scale experimental evidence underscores that discounting
strategies, such as quantity discounts, can influence consumer behavior and
overall revenue outcomes in digital gaming markets. A significant study
highlighted a randomized pricing experiment involving over 14 million online
game users, demonstrating that quantity discounts profoundly affected
purchase volumes, thus reinforcing the importance of strategically calibrated
discount policies in virtual economies [5]. These findings suggest that both
game pricing fluctuations and the design of discount schemes are intricately
tied to consumer behavior, competitive market forces, and the technological
evolution underpinning the metaverse.

The objective of this research is to predict game price trends and optimize
discounts using data mining techniques. By applying advanced algorithms like
XGBoost and time-series analysis, the study aims to uncover patterns in pricing
data and provide accurate forecasts for future prices. This predictive model will
help in understanding how video game prices fluctuate over time, taking into
account seasonal variations, store-specific strategies, and other influencing
factors. The significance of this research lies in its ability to offer valuable
insights into the pricing trends within the Metaverse market. As the virtual
economy grows, understanding the dynamics of pricing across different
platforms can provide both consumers and store owners with strategic
advantages. Consumers can make more informed decisions on when to
purchase games based on predicted price reductions, while store owners can
optimize their discount strategies to maximize sales and maintain competitive
pricing. This paper primarily focuses on price prediction and discount
optimization for video games across major online stores. The scope includes
analyzing historical price data from well-known platforms, identifying key
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factors influencing price changes, and developing models to predict future
trends. By examining the discounting strategies of various stores, this research
aims to provide a comprehensive approach to optimizing pricing in the digital
gaming industry, with an eye towards the growing Metaverse market.

Literature Review
Overview of Price Trend Analysis in E-Commerce

Recent studies on price trend analysis in e-commerce have highlighted the
growing importance of applying advanced statistical and machine learning
techniques to forecast the evolution of prices over time. These studies focus
on capturing the volatility inherent in online pricing strategies, while also
addressing the underlying macroeconomic and market-specific factors that
drive price changes. Understanding these factors is crucial for businesses as
they seek to optimize pricing decisions and respond effectively to market
fluctuations.

One of the most prominent areas of research in this field is dynamic pricing.
Dynamic pricing involves adjusting prices in real-time based on various factors
such as demand fluctuations, inventory levels, and competitive pressures. A
bibliometric analysis of dynamic pricing research shows a marked increase in
academic interest since the early 2000s, with a particularly sharp rise in
publications in 2021 [6]. This surge in research reflects the growing recognition
of dynamic pricing as a key component of e-commerce strategies, enabling
retailers to remain competitive by responding swiftly to changes in the
marketplace. The bibliometric approach used in these studies offers a
comprehensive mapping of the evolving research landscape and identifies
emerging challenges in the dynamic pricing domain.

Alongside dynamic pricing studies, various forecasting models have been
developed to predict how product prices evolve over time. One such model,
proposed by [7], integrates Autoregressive Integrated Moving Average (ARIMA)
with Google Trends data to predict future price trends on e-commerce
platforms. This approach highlights the power of time-series forecasting
techniques in predicting price changes, while also emphasizing the value of
incorporating external digital signals—such as online search trends—into
pricing models to enhance their accuracy. Similarly, [8] developed a forecasting
method based on Gaussian processes, which incorporates factors like seller
reputation and sales volume to predict price dispersion and future price
movement in the context of Chinese cross-border e-commerce. These
methodologies provide strong frameworks for understanding price trends and
offer valuable insights into the future of pricing strategies.

In addition to market-specific dynamics, macroeconomic factors also play a
significant role in shaping e-commerce pricing trends. For example, research
by [9] on exchange rate pass-through effects in Brazilian e-commerce
demonstrates how fluctuations in foreign exchange rates can alter the pricing
structures of online retailers. These fluctuations influence the cost of imported
goods, which, in turn, impacts the final price paid by consumers. This
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macroeconomic perspective adds an extra layer of complexity to dynamic
pricing models, as it underscores the importance of considering broader
economic conditions when developing pricing strategies for e-commerce
platforms.

Time-Series Forecasting

Time-series forecasting for price prediction has been widely explored across
various industries, including digital advertising, financial markets, commodity
pricing, and online auctions. Early studies, such as [10], demonstrate the value
of time-series analysis in digital signage advertising by modeling environmental
factors and audience attention changes, which influence pricing decisions.
Similarly, in financial time-series forecasting, [11] address the challenges
posed by low signal-to-noise ratios and the dynamic inter-asset relationships,
emphasizing that a successful forecasting framework requires understanding
the properties of time-series data such as linearity, stationarity, and volatility.
These studies highlight the critical role of time-series analysis in capturing the
underlying price dynamics across various sectors.

Classical time-series models, such as ARIMA and exponential smoothing, have
long been used to forecast prices in a wide range of markets. For example, [12]
successfully applied ARIMA models for forecasting day-ahead electricity
market prices, while [13] utilized similar methods for short-term agricultural
price indices forecasting. Additionally, [14] demonstrated that Holt’s double
exponential smoothing method could accurately predict gold bullion prices,
illustrating the effectiveness of smoothing techniques in capturing short-term
trends. These traditional statistical models, which also include semiparametric
regression analysis for dynamic auction price predictions [15], prove to be
versatile tools in a variety of forecasting scenarios, emphasizing their continued
relevance in modern forecasting tasks.

Advancements in machine learning and deep learning have significantly
enhanced time-series forecasting for price prediction. Research [16], [17]
employed Long Short-Term Memory (LSTM) networks to capture nonlinear
temporal dependencies in stock market data, achieving higher accuracy than
traditional models. Similarly, [18] developed a heterogeneous Gated Recurrent
Unit (GRU) neural network with an attention mechanism to predict fluctuations
in livestock product prices, demonstrating the advantages of deep learning in
handling complex, multi-scale price movements. Additionally, [19] highlighted
the effectiveness of recurrent neural networks in predicting stock trends, while
[20], [21] incorporated convolution-based filtering techniques to isolate latent
components in crude oil price series. These innovations reflect the growing
potential of deep learning models in price prediction tasks that require handling
complex patterns and long-term dependencies.

Beyond these conventional and advanced methods, fuzzy logic has also
emerged as a powerful tool for modeling price uncertainty. Research [22]
compared fuzzy time-series models to traditional forecasting techniques for
composite stock price indices, demonstrating that linguistic-based forecasting
provides added flexibility in scenarios where data patterns are ambiguous and
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variability is high. This approach, alongside hybrid forecasting techniques,
emphasizes the importance of flexibility in modeling uncertain price
movements. Studies incorporating exponential smoothing and hybrid methods
reveal that using an ensemble of time-series forecasting techniques can be
particularly effective in addressing the diverse characteristics of pricing data
across different markets.

XGBoost for Price Prediction

XGBoost, an ensemble learning algorithm that leverages gradient boosting
methods over decision trees, has gained widespread attention in price
prediction due to its exceptional accuracy and computational efficiency in
forecasting numerical values. By systematically reducing bias and variance in
predictions, XGBoost outperforms many traditional machine learning
algorithms, making it an ideal choice for various pricing applications. This
robustness in prediction accuracy is particularly useful in industries where
timely and precise pricing forecasts are crucial for decision-making [23], [24].

Beyond financial markets, XGBoost has proven its effectiveness in other
domains, such as environmental economics and digital asset markets.
Research [25] applied an extreme gradient boosting model optimized through
the whale optimization algorithm to forecast carbon prices, achieving superior
results compared to several benchmark models. Additionally, [2] introduced a
hybrid model that first processed carbon price signals before inputting them
into an XGBoost framework, leading to a notable reduction in prediction errors.
These studies demonstrate that XGBoost can effectively handle complex, high-
dimensional datasets and is adaptable across a wide range of pricing
scenarios.

Metaverse and Digital Economy Impact

The rise of the metaverse and virtual economies has fundamentally reshaped
the landscape of digital product pricing. This transformation introduces new
digital assets, revised business models, and innovative pricing mechanisms
that integrate traditional economic principles with digital innovation. Virtual
economies increasingly rely on digitized currencies, tokenized assets, and
dynamic market interactions to determine product value. The integration of
digital legal currencies and non-fungible tokens (NFTs) has catalyzed a shift
from conventional pricing methodologies towards value-based and
opportunity-driven pricing strategies. In this environment, prices are no longer
solely determined by production costs or consumer demand but are also
influenced by factors like digital scarcity, network effects, and cross-platform
interoperability [26], [27].

Metaverse platforms are central to these pricing transformations by creating
interoperable ecosystems that support both user-generated content and
platform-mediated pricing mechanisms. Research [28] conceptualize
metaverse platforms as meta-ecosystems where real-time rendered 3D virtual
worlds and digital environments converge, fostering increased consumer
engagement and co-creation of goods. This platform-centric view underscores
that pricing strategies in digital markets are deeply intertwined with the
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metaverse's underlying architecture. In these environments, platform owners
and orchestrators have significant influence over market dynamics, shaping
how products are priced and exchanged. Moreover, the concentration of
power in the hands of major technology companies active in extended reality
(XR) raises concerns about pricing transparency and the potential for
monopolistic behavior, which could affect competitive pricing strategies.

The pricing of digital products in the metaverse is also influenced by consumer
perceptions, digital scarcity, and the provenance of assets. Studies of virtual
marketplaces have shown that these factors significantly contribute to how
value is ascribed to digital goods. For instance, the pricing of digital game
accessories and virtual merchandise is increasingly driven by consumer
engagement metrics and perceived exclusivity. This trend is further amplified
by the decentralized and borderless nature of metaverse platforms, where
digital scarcity and exclusivity are major determinants of value. The emergence
of tokenized assets has led to the redesign of traditional discounting and
pricing models, where algorithms account for network effects and real-time
market signals to optimize pricing strategies in dynamic virtual economies [26].
These developments highlight the need for adaptive pricing strategies capable
of responding to rapidly changing market conditions within the metaverse.

Furthermore, the advent of these digital pricing mechanisms introduces a shift
in how businesses approach pricing strategy. Unlike traditional e-commerce,
where pricing is influenced primarily by cost-plus models or competitive
benchmarking, the metaverse demands more dynamic and complex pricing
approaches. Platforms must take into account not only the digital scarcity and
perceived value of assets but also the governance structures that influence the
ownership and distribution of digital products. These new pricing models also
emphasize consumer co-creation, where the involvement of users in shaping
the product or asset can influence its market value. This represents a
significant departure from conventional pricing models and signals the need
for ongoing innovation in digital pricing strategies.

Method

The workflow of the proposed Time-Series XGBoost Regression (TS-XGBR)
model is illustrated in figure 1. The process begins with data preprocessing,
where the dataset containing time, title, storelD, price, retailprice, and savings
is loaded, converted to datetime format, and sorted chronologically to preserve
temporal order. Missing values are then handled through forward filling or row
removal when critical data are absent. Once the dataset is cleaned, feature
engineering is performed to extract lag features, autocorrelation coefficients,
and the Price Momentum Ratio (PMR), along with temporal attributes such as
day of the week, month, and year. These features are compiled into a feature
matrix Xand a target vector y, which are used to train an XGBoost regressor
under a time-aware cross-validation scheme. The model is optimized and
evaluated iteratively, where performance assessment determines whether
retraining is necessary. If the results meet the desired criteria, the final trained
model and feature importance metrics are saved for interpretation and
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deployment.

Figure 1 Proposed Time-Series XGBoost Regression (TS-XGBR)

Data Preprocessing

The process of predicting video game price trends across multiple online
stores begins with a detailed data preprocessing stage, designed to ensure
data integrity and temporal coherence. The dataset consists of essential
columns such as Time, title, storelD, price, retailprice, and savings. To facilitate
temporal analysis, the Time column is converted into a datetime object,
enabling chronological operations such as lag creation and time-based
resampling. The dataset is then sorted according to steamApplD, storelD, and
Time to maintain sequential order, which is vital for modeling time-dependent
variables. Missing data are handled using forward filling, a method that
propagates the most recent known value to subsequent missing entries,
thereby preserving price continuity within each game-store combination. If
essential information, particularly in price or retailprice, remains unavailable,
those rows are removed to avoid inconsistencies during model training. This
process ensures that the temporal relationships between price observations
are not disrupted, forming a reliable foundation for subsequent analysis.

Feature Engineering

Once the data has been cleaned and structured, feature engineering is
performed to enhance the model’s ability to capture temporal patterns and
price dynamics. Lag features are created to provide the model with historical
price information, enabling it to recognize both short-term fluctuations and
longer-term cycles in the data. These lag features are derived at various
intervals, such as 1, 3, 7, and 14 days, to represent different temporal horizons.

To further quantify the relationship between current and past prices, an
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autocorrelation coefficient is introduced. This metric measures the degree of
similarity between a time series and a lagged version of itself and is expressed
as

S 0= P)Pek — P)
Zle(pt - p)?

Pr = (1)

prindicates the strength of correlation between the price at time tand its value

kperiods earlier. A high p,suggests strong temporal persistence, implying that

past prices significantly influence future values. Additionally, a distinctive

metric known as the Price Momentum Ratio (PMR) is introduced to measure

short-term acceleration or deceleration in pricing movements. It is defined as
Pt — Ptk

PMRt = ﬁ (2)

PMR,represents the relative rate of change in price compared to a previous
point ksteps back. This ratio allows the model to capture dynamic price
behavior such as discounts, flash sales, or gradual price increases.

Temporal features such as dayofweek, month, year, and weekofyear are
extracted to capture seasonal patterns and cyclical effects in price trends,
which are common in digital game markets influenced by events like sales
periods or holiday seasons.

Model Training

The cleaned and feature-enhanced dataset is then used to train an XGBoost
regression model, selected for its efficiency and ability to model nonlinear
interactions among temporal features. The algorithm constructs an ensemble
of decision trees through gradient boosting, minimizing a regularized objective
function that balances accuracy and model complexity. Hyperparameters such
as learning rate (0.05), maximum depth (7), and the number of estimators (500)
are optimized to achieve stable and accurate results.

To evaluate the model reliably, a TimeSeriesSplit cross-validation strategy is
employed, ensuring that the temporal order of the data is preserved. Each
validation fold uses earlier data for training and later data for testing, thereby
simulating realistic forecasting scenarios and avoiding data leakage.

Model Evaluation

After training, the model’s predictive performance is assessed and interpreted
through a combination of quantitative metrics and qualitative visualization.
Instead of relying solely on general metrics, deeper analysis is conducted using
XGBoost's internal feature importance scores, which indicate how much each
feature contributes to reducing prediction error. These insights help identify the
most influential predictors in price estimation, typically including retailprice,
PMR, and the autocorrelation terms.

Visual assessment complements the numerical evaluation through scatter
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plots of predicted versus actual prices, residual plots showing error
distributions, and time-series plots comparing observed and predicted price
trends. These analyses provide a clear understanding of model accuracy and
stability over time, while also revealing potential temporal patterns or
deviations that may require model refinement.

Algorithm 1 Time-Series XGBoost Regression (TS-XGBR)

Let the dataset be denoted as

D= {(tl‘,titlei, StOl’elDl‘,pi, i, S,:) li=1,2,..., N}
where t;is the timestamp, p;is the price, r;is the retail price, and s;is the savings value.

Step 1: Data Preprocessing
1. Convert t; - datetime(t;)for all i.
2. Sort Dby (steamApplD,storelD, t;).
3. Handle missing values using forward filling:

— ifp;# 0
iy, ifpi=0
Remove all tuples where p; = @or r; = @.

Step 2: Feature Engineering

For each unique pair (g, s)€ (game, store), and for each time index t:
e Lag Features:
Ly(Pt) = De—r, k € {1,3,7,14}

e Autocorrelation Coefficient:

N i@ = D) @erc — D)

> (e — D)

Pr =
where p = %Zlept.

e  Price Momentum Ratio (PMR):

pMR, = PPtk 4 437
Ptk
Temporal Features Extraction:
TimeFeatures(t) = {dayofweek(t),month(t),year(t),weekofyear(t)}
Construct the feature matrix:

X = [Lx(pe), px, PMR,, TimeFeatures(t), ¢, s¢]
and the target vector:

y =[pe
Step 3: Model Training

Split dataset Dinto temporally ordered folds:

{(Xt(gzin' yt(;gzin)' (Xt(;)st' yt((:zt)}' i=12..., nsplits
using TimeSeriesSplit such that:

max (t(i) ) < min (t(i)

train test
Train the XGBoost regression model f;to minimize the regularized objective:

N
min ) 10 fo(X) + Y 0]
i=1 k
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where

1
Q(fy) =T +§/1 Il w2
and l(y;, 7)) = (i — 9%
Step 4: Model Evaluation

After training, compute feature importance /;for each feature x; € X:

1 K
I]' = Ekzl ALk’]‘

where AL, jrepresents the average loss reduction contributed by feature jin tree k.
Evaluate prediction quality by comparing:

Ve = fo(Xt)
with the observed price y;, and visualize:

{&ye), &9, 6y — I}
as time series, scatter plots, and residual plots.

Step 5: Model Deployment
Store the final optimized model:

M* = fo: (X)
where 6*is the parameter set that minimizes validation loss.
Export both the model and feature importance scores for interpretability and future inference.

Result and Discussion
Descriptive Statistics

The dataset used in this analysis comprises 73,000 observations, each
corresponding to a price record for a video game across five different online
stores over a two-year period. The dataset contains essential columns such as
Time, steamAppID, storelD, price, retailprice, and savings, which track the
price fluctuations and discounts applied to the games over time. The
descriptive statistics of the dataset provide valuable insights into the pricing
patterns and distribution of values. On average, the price of a video game in
this dataset was $39.52, with retail prices ranging from $20.19 to $69.54. The
savings, which represent the discount applied to the retail price, had a mean
value of 6.46%, with the maximum savings reaching up to 75.59%. Notably,
the majority of the games had no discount applied, as 75% of the records
showed savings of 0%, indicating that most games were sold at their full retail
price. This distribution suggests that the dataset captures a wide variety of
pricing behaviors, from full-price sales to heavily discounted games.

Figure 2 displays the distribution of game prices in the dataset. The histogram
represents the frequency of game prices, with a smooth curve (KDE) overlaid
to show the price distribution more clearly. The prices are concentrated around
certain values, with noticeable peaks at various price ranges, such as around
$20, $40, and $60. This suggests that these are common price points for the
games in the dataset.
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Figure 2 Distribution of Game Prices

The KDE curve indicates that the distribution of game prices follows a
multimodal pattern, with several price ranges exhibiting higher frequencies,
which could correspond to specific pricing strategies or market trends in the
digital gaming industry. The spread of prices is quite broad, extending from
around $5 to just under $70, reflecting a wide variety of games and their
corresponding pricing structures. Figure 3 shows the distribution of retalil
prices for the games. Similar to figure 2, the histogram illustrates the frequency
of retail prices across different price intervals, and the smooth curve (KDE)
helps to visualize the general price trend. The distribution of retail prices has
clear peaks at certain values, with the most prominent being around $30 and
$50, indicating that these are the most common retail prices for the games in
the dataset.
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Figure 3 Distribution of Retail Prices

The KDE curve highlights the bimodal nature of retail prices, where there are
two primary clusters of prices. This suggests that many games are priced either
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in the lower range around $20-$30 or the mid-range around $50-$60. This
pattern may reflect the pricing strategy where the majority of games are priced
within these two bands, while fewer games are priced at the extremes of the
spectrum. Figure 4 illustrates the distribution of discounts (or savings) when a
game is on sale, showing the percentage of discount applied to the retail price.
The histogram, along with the overlaid smooth curve (KDE), highlights several
important trends in the data. The most striking feature of the graph is the
significant concentration of values at 0% savings. This is expected because
many of the games are likely sold at full price, reflecting that 0% savings
accounts for the largest portion of the data.

1400
1200

1000

3

Frequency

8

400

o AN,

Savings (%)

Figure 4 Distribution of Discounts

The bar at 0% savings is extremely tall, indicating that a substantial number of
games in the dataset were not discounted at all. For the other discount
percentages, the graph shows a much more even distribution, with several
discount ranges between 10% to 75%. While these discounts occur less
frequently than the 0% discount, the number of games with discounts steadily
increases as the savings percentage rises, especially between 10% and 30%.
After this point, the frequency of discounts starts to taper off, with fewer games
offering higher discounts. The KDE curve illustrates this trend, showing a gentle
peak at around 15% to 20% savings, before the distribution becomes flatter
as discounts increase. The presence of a long tail in the distribution suggests
that some games receive significant discounts, with a few instances of
discounts reaching as high as 75%. However, these high discounts are
relatively rare, as indicated by the small number of observations towards the
right side of the graph. This suggests that while heavy discounts are offered,
they are not common and might be reserved for specific sales events or
promotional periods. The overall pattern of this distribution indicates a pricing
strategy where most games are sold at or near retail price, with moderate
discounts applied to a smaller subset of games.

Figure 5 illustrates the average game price over time on a weekly basis. The
plot shows fluctuations in the average price of games across the two-year

Maidin and Yahya (2025) Int. J. Res. Metav. 344



International Journal Research on Metaverse

period. The price trend is characterized by noticeable peaks and valleys, with
prices occasionally spiking above $39.8 and then dropping to around $39.2.
These fluctuations may suggest periodic pricing adjustments, possibly in
response to factors like sales events, promotions, or market conditions.
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Figure 5 Average Game Price Over Time (Weekly)

The presence of sharp variations indicates that the pricing strategy of the
games might change frequently, but there is a general stability around a mean
price close to $39.5. The weekly time interval provides insights into short-term
trends, capturing the impact of weekly fluctuations in pricing, which could be
influenced by factors such as store-specific pricing, seasonal changes, or
consumer demand. Figure 6 provides a comparison of the average game price
over time for five different stores.
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Figure 6 Average Game Price Over Time (Per Store)

The data is visualized with separate lines for each store, with each line showing
weekly average price trends over the same two-year period. The graph reveals
that each store exhibits distinct price trends, with some stores showing higher
average prices than others, particularly Store E, which consistently has prices
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above $40. Meanwhile, Store A has the most volatile price fluctuations,
experiencing more dramatic ups and downs compared to the other stores. The
different stores display variations in their pricing strategies, which could be
attributed to factors such as pricing models, promotions, and inventory
management. The lines for Store B and Store C generally stay closer to the
average price range, while Store D shows a more consistent pricing pattern.
This comparative analysis highlights the competitive pricing dynamics among
different e-commerce platforms and can offer insights into how price
differentiation is managed across multiple retailers.

Data Preprocessing and Feature Engineering

The data preprocessing phase begins with ensuring that the dataset is properly
structured for time-series analysis. The Time column, which represents the
date of each price observation, is converted to a datetime object, which is
essential for handling temporal data correctly. The dataset is then sorted by
steamAppID, storelD, and Time to ensure the chronological order is
maintained, as time-series models require data to be processed in a temporal
sequence. Sorting by steamAppID and storelD ensures that prices and other
features are handled correctly within each game/store combination, as lag
features will be calculated based on the previous time periods for the same
game and store. During this preprocessing stage, missing data is checked, and
although no missing values were found in the dataset, a robust strategy is in
place for handling missing values in real-world datasets. Missing values in
critical columns such as price or retailprice would be dropped, while for less
critical data, methods like forward filling could be applied to maintain the
continuity of time-series data.

Once the data is cleaned and sorted, feature engineering is carried out to
enhance the model's predictive capabilities. The creation of lag features allows
the model to take into account the past price and savings data for each game
and store, which is crucial for predicting future prices based on historical
trends. Several lag periods were chosen, including 1, 3, 7, and 14 days, to
capture both short-term and longer-term dependencies in the pricing data. In
addition to lag features, time-based features were extracted from the Time
column to capture seasonal and cyclical patterns. These features included the
day of the week, month, year, day of the year, and week of the year. These
time-based features are important because pricing behaviors in digital markets
often follow seasonal trends (e.g., price increases during holidays or special
events). Furthermore, rolling window features were calculated, such as the 7-
day rolling mean and rolling standard deviation of prices, to capture short-term
price fluctuations and volatility. These rolling statistics provide the model with
insights into recent price trends and price variability, which are important for
making accurate short-term predictions.

Model Training and Evaluation

For model training, XGBoost was selected due to its high efficiency and strong
performance in regression tasks. The model was trained using a
TimeSeriesSplit cross-validation strategy, which is critical for time-series

Maidin and Yahya (2025) Int. J. Res. Metav. 346



International Journal Research on Metaverse

forecasting tasks. This method ensures that the temporal order of the data is
respected by splitting the dataset into training and testing subsets, where each
test set represents a future time period. The model is trained on the training set
for each fold and evaluated on the corresponding test set. This approach
simulates a real-world scenario where the model must predict future prices
based on historical data, making it ideal for time-series forecasting tasks.

The XGBoost model was configured with a set of parameters that are optimized
for regression tasks. These parameters include a learning rate of 0.05 to control
the contribution of each new tree to the final prediction, a maximum tree depth
of 7 to prevent overfitting, and 500 estimators (or boosting rounds) to ensure
sufficient learning capacity. The objective function was set to reg:squarederror
for regression, and RMSE was chosen as the evaluation metric to guide the
training process. The performance of the model was evaluated using multiple
regression metrics, including Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), and R-squared (R?). The evaluation results for each fold of the
cross-validation were as follows: in the first fold, the model achieved a MAE of
3.93, RMSE of 5.56, and R? of 0.60, indicating reasonable performance. The
second fold showed a slight decline in performance, with a MAE of 7.90, RMSE
of 10.42, and R2 of 0.44. However, in the third fold, the model's performance
improved, achieving a MAE of 4.52, RMSE of 7.24, and R? of 0.66. The fourth
and fifth folds demonstrated the best performance, with MAE values of 3.70
and 4.22, RMSE values of 6.44 and 7.69, and R2 values of 0.86 in both cases.
The average performance across all folds was a MAE of 4.85, RMSE of 7.47,
and R? of 0.68, indicating that the model was able to explain 68% of the
variance in the price data with relatively low error metrics.

Feature Importance Analysis

After training the model, an important aspect of understanding its decision-
making process is analyzing feature importance. This analysis helps to identify
which variables contribute the most to the model’s predictions. In the case of
this model, the retail price emerged as the most important feature, contributing
53.47% to the prediction of game prices. This result aligns with expectations,
as the retail price is likely the most significant factor in determining the final
sale price. The rolling mean of prices over 7 days, labeled as
price_roll_mean_7, was the second most important feature, with a contribution
of 26.47%. This suggests that short-term trends in price data play a substantial
role in the model’s predictions. Other lag features, such as price_lag_14,
price_lag_7, and price_lag_3, also contributed to the model, with price_lag_14
being the most influential of the lag features at 7.99%. The time-based
features, such as dayofweek, month, and year, had lower importance scores,
but still played a role in capturing seasonal and cyclical pricing patterns. The
savings features, particularly lagged savings values, also contributed to the
predictions, though their influence was more modest compared to price-
related features.

Figure 7 presented is a feature importance plot generated from the XGBoost
model, displaying the relative importance of each feature used in the model for
predicting game prices. The bars in the graph represent the relative importance
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of the features, with the longer bars indicating greater importance. The features
are ranked based on their contribution to the model's predictions. From the
graph, it's clear that retailprice is the most influential feature, with the longest
bar, accounting for the largest proportion of the model's predictive power. This
aligns with expectations, as the retail price is likely the most significant
determinant of the final sale price.
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Figure 7 Feature Importance Bar

The rolling mean of price over 7 days (price_roll_mean_7) comes in second,
reflecting the importance of short-term price trends in predicting future prices.
The lag features also play a significant role, with price_lag_14 (the price from
14 days ago) being the third most important feature, followed by price_lag_7,
price_lag_3, and price_lag_1, which capture increasingly shorter time spans of
historical data. These lag features allow the model to incorporate the temporal
dependencies of game prices. Other important features include savings-
related lag features, such as savings_lag_1, savings_lag_3, and savings_lag_7,
which reflect the impact of previous discounts on current price trends. The
rolling standard deviation of price over 7 days (price_roll_std_7) also
contributes significantly to the model, as it helps capture price volatility and
fluctuations. Time-related features like weekofyear, year, and dayofyear also
show meaningful contributions, helping the model account for seasonal trends
and other cyclical effects in pricing. However, features like storelD,
savings_lag_14, and month have a relatively lower importance, indicating that
while they contribute to the predictions, their impact is not as strong as the
price and savings-related features.

Final Evaluation and Visualizations

The final evaluation was based on the results from the last fold of the cross-
validation process. A detailed comparison of the predicted prices and actual
prices was conducted using various visualizations. Figure 8 compares the
actual prices and predicted prices of games over time, specifically for the last
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fold of the test set in the cross-validation process. The blue line represents the
actual prices of the games, while the orange line represents the predicted
prices generated by the model. From the graph, we can observe that the
model's predictions generally track the actual prices quite well, especially in
the mid-range of the price spectrum.
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Figure 8 Comparison of Actual vs Predicted Prices

There are fluctuations where the predicted prices (orange) deviate from the
actual prices (blue), but the overall trend is similar. These deviations are most
noticeable during periods of high volatility, where both the actual and predicted
prices exhibit sharp peaks and valleys. This suggests that while the model
captures the overall pricing trend, it may struggle with accurately predicting
extreme fluctuations or sudden spikes in prices. The shaded regions on the
graph emphasize the areas of deviation between the actual and predicted
prices. These areas indicate where the model's predictions are not as accurate,
particularly during the periods of sharp price changes. However, the model
remains relatively effective in predicting the general price trajectory, especially
during more stable periods. The results show that the model is capable of
providing a reasonable estimate of game prices, though there is room for
improvement, particularly in handling price volatility or sudden market shifts.

The results indicate that the XGBoost model performed well in predicting video
game prices, with the best performance observed in the later folds of the cross-
validation. The model's ability to capture price trends, along with its reliance
on the most relevant features, suggests that it can be effectively used for
predicting prices in dynamic markets. The feature importance analysis
provided valuable insights into the factors driving price predictions, particularly
the significant role of retail prices, lag features, and short-term price trends.
Overall, the model demonstrated strong predictive power and could be useful
for pricing strategies in online retail, particularly in dynamic and evolving
environments such as the metaverse.

Conclusion

The analysis of game prices reveals that they fluctuate according to specific
trends, with periodic price adjustments reflecting market conditions, consumer
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behavior, and sales events. The exploration of discount strategies
demonstrates that discounts are a key factor in driving sales, with certain
discount percentages being more effective in increasing consumer interest.
The price prediction model, developed using data mining techniques, showed
a reasonable ability to forecast game prices, though there were challenges in
predicting prices at the extreme ends of the spectrum. The results highlight
that game pricing is influenced by both external market factors and internal
strategies, such as discounts and seasonal promotions. The ability to predict
game pricing accurately is of significant value for the Metaverse market, where
virtual goods and services, including games and in-game assets, are
increasingly traded. Price prediction models can help anticipate price
fluctuations in this emerging market, allowing game developers, retailers, and
platform owners to optimize their pricing strategies. Furthermore, such models
can also help forecast when sales or discounts should be applied to maximize
revenue or drive user engagement. As virtual economies in the Metaverse
continue to grow, understanding price dynamics will be essential for
stakeholders to stay competitive and profitable. This research contributes to
the field of digital economics by showcasing how data mining techniques,
specifically XGBoost, can be used to improve the understanding of pricing
behaviors in virtual economies. By analyzing and predicting price trends in the
digital game market, the study sheds light on the complexities of virtual product
pricing, which differs from traditional physical product pricing due to factors
like digital scarcity, tokenized assets, and real-time market interactions. This
approach enhances our ability to navigate and optimize pricing models within
the virtual economy, which is becoming an increasingly significant component
of the global digital marketplace.

Further research could expand the scope of the current study by integrating
additional features, such as user reviews, game ratings, or social media
sentiment, which may influence game pricing and sales trends. Additionally,
applying this model to specific Metaverse game platforms could offer more
detailed insights into how virtual economies operate in these environments.
The incorporation of these features would likely improve the model's accuracy,
particularly in predicting the pricing of digital goods and services in a rapidly
evolving market. The findings from this research offer practical insights for
online game retailers and other stakeholders in the digital marketplace. By
leveraging price prediction models, these retailers can optimize their pricing
strategies to increase sales, attract customers, and enhance their overall
business performance. Additionally, understanding the impact of discounting
strategies on game prices can allow retailers to fine-tune their promotional
activities and better meet consumer expectations. Ultimately, the application
of these models can lead to a more efficient pricing system, benefiting both
retailers and consumers in the growing digital economy.
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