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ABSTRACT

Human gait analysis plays a vital role in assessing locomotor function, postural
stability, and early detection of motor impairments. This study proposes an
unsupervised hybrid anomaly detection framework that integrates PCA and Isolation
Forest (IF) to automatically identify abnormal gait patterns using a Multivariate
Biomechanical Dataset (MGAD) containing 5,000 gait samples. PCA was utilized to
reduce dimensionality and compress correlated gait features while retaining 95.1% of
the total variance, thereby preserving essential biomechanical information. The
reconstruction errors obtained from PCA were subsequently analyzed using Isolation
Forest to isolate anomalous gait instances. Experimental results demonstrate that the
hybrid PCA-IF model effectively differentiates between normal and abnormal gait
behaviors, achieving an ROC-AUC of 0.912 and an F1-score of 0.866, indicating
strong discriminative capability and model stability. Feature-level reconstruction
analysis revealed that stance phase duration, step length, and stride length are the
most influential determinants of gait irregularities, aligning with established clinical
findings in gait biomechanics. The proposed framework is computationally efficient,
interpretable, and fully unsupervised, making it suitable for real-time clinical
assessment, rehabilitation monitoring, and wearable healthcare applications. These
findings highlight the potential of hybrid statistical-machine learning models in
advancing automated gait diagnostics and intelligent mobility analytics.

Keywords Gait Anomaly Detection, Principal Component Analysis, Isolation Forest,
Biomechanical Analysis, Machine Learning

INTRODUCTION

Human gait is a fundamental aspect of locomotion that reflects the coordinated
interaction between the musculoskeletal and nervous systems [1]. It serves as
a vital indicator of a person’s motor control, balance, and neurological health
[2]. Subtle deviations in gait parameters, such as irregular stride length,
asymmetrical stance duration, or abnormal joint movements, can signify the
early onset of neuromuscular disorders, balance impairments, or degenerative
conditions like Parkinson’s disease [3]. Consequently, accurate gait
assessment plays an essential role in clinical diagnostics, rehabilitation
monitoring, and preventive healthcare. In recent years, the growing integration
of biomechanics with machine learning techniques has enabled a more
objective and data-driven understanding of gait dynamics, overcoming the
limitations of traditional observational assessments [4].

Conventional gait analysis methods largely depend on visual inspection or
manually interpreted sensor recordings, which are inherently subjective, time-
consuming, and limited in scalability [5]. While advanced sensor technologies
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and motion capture systems have improved data acquisition accuracy, the
challenge lies in developing computational models capable of automatically
identifying abnormal gait behaviors from high-dimensional data [6]. Supervised
learning algorithms such as Support Vector Machines, Random Forests, and
Convolutional Neural Networks have been successfully applied to gait
classification tasks; however, their effectiveness relies heavily on the availability
of large, labeled datasets [7]. In clinical and real-world scenarios, labeled gait
anomaly data are often scarce or inconsistent, creating the need for
unsupervised approaches that can learn from normal gait patterns and
autonomously detect deviations indicative of anomalies.

Unsupervised anomaly detection methods have gained significant attention for
their capability to model the intrinsic distribution of normal behavior and identify
deviations without requiring labeled samples [8]. Among these, techniques such
as Autoencoders, One-Class SVM, and Isolation Forest have shown promise in
medical anomaly detection tasks. However, many of these approaches involve
complex model architectures that compromise interpretability and
computational efficiency. To address these challenges, this study introduces a
hybrid anomaly detection framework that integrates Principal Component
Analysis (PCA) and IF for automated gait anomaly detection. PCA is employed
to compress and reconstruct multivariate gait data while retaining 95.1% of the
total variance, ensuring that essential biomechanical information is preserved.
The reconstruction errors derived from PCA are then used as inputs for the
Isolation Forest algorithm, which isolates gait instances exhibiting statistically
significant deviations from the learned normal pattern.

The proposed hybrid PCA such as Isolation Forest model was evaluated using
the Multivariate Gait Analysis Dataset (MGAD), which consists of 5,000 gait
samples and 16 biomechanical variables, including stride length, stance and
swing phase durations, joint angles, and ground reaction forces. The
experimental results demonstrated that the model achieved a ROC-AUC of
0.912 and an F1-score of 0.866, confirming its effectiveness in distinguishing
normal gait behaviors from abnormal ones. Feature-level reconstruction
analysis revealed that stance phase duration, step length, and stride length
were the most influential parameters in anomaly detection, consistent with prior
clinical research highlighting temporal-spatial irregularities as indicators of
postural instability and motor dysfunction.

This study contributes to the growing body of research in gait anomaly detection
by proposing an interpretable and computationally efficient hybrid framework.
The integration of PCA and Isolation Forest enables robust detection of gait
anomalies without the need for labeled data, offering significant potential for
real-time deployment in clinical environments, rehabilitation monitoring, and
wearable health systems. Furthermore, the findings provide valuable insights
into biomechanical parameters most indicative of abnormal gait behavior,
bridging the gap between machine learning-based analytics and clinical gait
interpretation.

Literature Review

Gait analysis has long been recognized as a fundamental aspect of clinical
biomechanics. It serves as a critical indicator for evaluating motor control,
postural stability, and neuromuscular coordination. Early studies established
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that temporal variability in gait patterns can serve as an early biomarker for
neurological and balance impairments, while subsequent research highlighted
the importance of kinematic and kinetic parameters such as stride length,
stance phase duration, and joint angles in understanding locomotor control [9],
[10]. Traditional gait assessment methods, however, relied heavily on visual
observation or laboratory-based motion capture systems, which limited
objectivity, scalability, and accessibility in long-term monitoring.

The emergence of Machine Learning (ML) and wearable sensor technologies
has significantly advanced gait analysis by enabling automated and data-driven
modeling of human locomotion. Early implementations using on-body
accelerometers combined with ML classifiers demonstrated that statistical
learning techniques could enhance the precision of activity recognition [11].
Similarly, sensor-based algorithms have been developed to estimate gait
temporal parameters with high accuracy, marking a transition from manual
interpretation toward computationally driven gait analytics [12].

Despite these advancements, supervised classification techniques such as
Support Vector Machines (SVM), Random Forests, and Convolutional Neural
Networks (CNNs) continue to depend heavily on labeled datasets. Applications
of CNNs for gait recognition using pose estimation from video sequences have
shown strong performance, but their reliance on large annotated datasets limits
clinical feasibility [13]. This challenge has prompted a growing shift toward
unsupervised anomaly detection approaches that can autonomously learn
normal motion patterns and identify deviations without prior labeling.

Among unsupervised methods, Autoencoders have shown effectiveness in
learning compressed latent representations of normal gait signals. Studies have
demonstrated that reconstruction error from nonlinear Autoencoders can
accurately identify anomalous sensor readings [14]. However, deep
Autoencoder architectures often involve high computational complexity and
limited interpretability, which present challenges for clinical adoption. To
overcome these limitations, the Isolation Forest (IF) algorithm has emerged as
a lightweight and efficient alternative [15]. By recursively partitioning data, IF
isolates anomalies with minimal training cost and strong scalability. The
approach has been validated as a robust technique for detecting abnormal
physiological patterns in biomedical applications [16].

Parallel to these developments, Principal Component Analysis (PCA) has been
widely utilized for feature extraction and dimensionality reduction in gait
analysis. Empirical findings indicate that PCA can differentiate between healthy
and pathological gait patterns by identifying principal modes of motion variability
[17]. Further research combining PCA with IF has achieved a balance between
interpretability and detection precision, which makes such hybrid frameworks
particularly relevant for biomechanical gait anomaly detection [18]. Additional
studies employing PCA-based hybrid modeling have also confirmed that low-
dimensional representations can improve sensitivity in detecting subtle
behavioral deviations [19].

Recent research has extended these techniques to real-world applications.
Unsupervised ML models based on wearable sensors have achieved high
accuracy in detecting gait anomalies among patients with neurological
conditions [20]. Other approaches integrating RGB-D video data with LSTM
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Autoencoders have enabled real-time, non-invasive detection of gait
abnormalities during daily activities [21]. Similarly, algorithms such as IF and
One-Class SVM applied to smart-cane sensor data have been effective in
monitoring gait and tremor patterns among elderly populations [22]. Advances
in real-time gait phase detection have also demonstrated the potential of
unsupervised neural networks for adaptive rehabilitation systems [23]. In
addition, multimodal frameworks that fuse 3D vision sensors with anomaly
detection algorithms have been shown to enhance fall-risk assessment
accuracy in older adults [24]. Hybrid unsupervised frameworks that combine
PCA with deep Autoencoders have further improved generalization and
interpretability in biomedical time-series anomaly detection [25].

Despite the notable progress achieved, ongoing challenges remain in balancing
accuracy, interpretability, and computational efficiency. Deep models tend to
outperform classical approaches in terms of detection accuracy but are less
explainable and demand extensive computational resources. In contrast,
simpler algorithms offer higher transparency but may underperform when
dealing with complex and high-dimensional biomechanical data.

To bridge this gap, the present study introduces a hybrid PCA—Isolation Forest
model tailored for multivariate gait anomaly detection. PCA is used to compress
gait features while preserving 95.1% of the total variance, whereas Isolation
Forest identifies abnormal samples efficiently with minimal computational
overhead. This integration leverages the complementary strengths of linear
feature extraction and ensemble-based anomaly detection, offering a
transparent, data-efficient, and clinically viable framework for automated gait
analysis.

By positioning itself at the intersection of biomechanical gait research and
unsupervised machine learning, this study contributes to the growing domain of
intelligent healthcare analytics. The proposed hybrid framework not only
enhances anomaly detection accuracy but also improves interpretability,
supporting its integration into wearable monitoring systems, rehabilitation
analytics, and real-time clinical gait assessment applications.

Methods

This study employed a hybrid unsupervised anomaly detection framework that
combines PCA and IF to identify gait anomalies in multivariate biomechanical
data. The research methodology follows the workflow depicted in figure 1
(Research Steps), which includes five main stages: data preprocessing, feature
normalization, dimensionality reduction using PCA, anomaly detection through
Isolation Forest, and performance evaluation using statistical metrics and
visualization. This integrated framework was specifically designed to maintain
interpretability, efficiency, and accuracy in unsupervised gait anomaly detection.
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Figure 1 Research Step

The dataset used in this study is the MGAD, which consists of 5,000 gait
samples containing 16 biomechanical parameters, such as stride length, step
length, stance phase duration, swing time, cadence, joint angles, and ground
reaction forces [26], [27]. Each observation was labeled as normal (0) or
abnormal (1) to enable model validation. Before model training, data
preprocessing was carried out to remove missing values and normalize feature
scales using the Min—Max normalization, defined as:

1 X—Xmin
= Xmax~Xmin (1)
x' is the normalized value, x the original feature, and x,,;, Xmax represents the
minimum and maximum feature values, respectively. This transformation
ensures uniform feature contribution during PCA projection and prevents bias
due to differing units or magnitudes.

PCA was applied to reduce the dimensionality of the gait dataset while
preserving the essential biomechanical variance. Given an input data matrix X €
R™P with n samples and p features, PCA computes orthogonal
transformations to derive a set of Principal Components (PCs) [28], [29]. The
transformation is mathematically expressed as:

Z =XW (2)

Z denotes the transformed data, and W is the matrix of eigenvectors obtained
from the covariance matrix Xy. The covariance matrix is computed as:

1

—(x-x) (x-X) 3)

2X=
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and the eigen-decomposition of Xy yields eigenvalues A; and
eigenvectors w; that capture the directions of maximum variance. The number
of retained principal components k was determined by ensuring that the
cumulative explained variance ratio exceeded 95.1%, preserving most of the
gait information while reducing dimensionality. The PCA model was trained
using only normal gait samples to capture the intrinsic structure of normal
locomotion [30]. Once trained, the model reconstructed all gait samples and
computed the reconstruction error for each sample using the following
expression:

D
1
E; =~ E (i — %)) (4)
P&

E; is the reconstruction error of the i-th sample, x;; is the original feature value,
and z;; is the reconstructed value obtained through inverse PCA

transformation. A high reconstruction error indicates that the gait pattern
deviates significantly from the normal manifold, suggesting a potential anomaly.

The reconstruction error values were then used as input to the Isolation
Forest algorithm for anomaly detection. IF isolates anomalies by recursively
partitioning the data through random feature and split value selection. The
anomaly score of a sample x is defined as:

x)
s(x) = 2_5(0?71) : (5)

E(h(x)) denotes the average path length of the sample x over an ensemble of
binary trees, and c(n) represents the average path length in a randomly
partitioned binary tree of size n. Samples with shorter average path lengths are
more likely to be anomalies. In this study, the Isolation Forest was configured
with 100 trees and a contamination rate of 0.10, corresponding to the estimated
proportion of abnormal gait samples in the dataset.

The model’s performance was evaluated using several standard metrics
derived from the confusion matrix, including Precision, Recall, F1-score, and
the Area Under the Receiver Operating Characteristic Curve (ROC-AUC).
These metrics are defined as follows:
Precision — TP Recall = TP Flo2x Precision X Recall (6)
TeCStOn = e T Ep N T TP L ENT T T © 7 Precision + Recall

TP, FP, and FN represent true positives, false positives, and false negatives,
respectively. The ROC-AUC metric measures the model’s ability to discriminate
between normal and abnormal gait samples across varying decision thresholds.

The hybrid PCA-IF model achieved an ROC-AUC score of 0.912 and an F1-
score of 0.866, demonstrating excellent discriminative capability between
normal and abnormal gait profiles. Visualization analyses further supported the
model’s effectiveness: the distribution of reconstruction errors showed clear
separation between normal and abnormal classes, the ROC curve illustrated
high sensitivity with minimal false positives, and the confusion matrix confirmed
balanced classification performance. The feature-level reconstruction
analysis identified that stance phase duration contributed the most to overall
reconstruction error (E = 0.037089), followed by step length (E = 0.000918) and
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stride length (E = 0.000556). These findings align with clinical gait research
emphasizing that temporal irregularities are among the earliest indicators of
locomotor instability.

In conclusion, the methodological framework integrates PCA and Isolation
Forest into a cohesive hybrid model that is both interpretable and data-efficient.
PCA captures the latent manifold of normal gait mechanics, while the Isolation
Forest isolates outliers that deviate significantly from that manifold. The
combination allows robust detection of abnormal gait behaviors without the
need for labeled data, making it suitable for real-time clinical
applications, rehabilitation monitoring, and wearable healthcare
systems focused on continuous movement analysis. Algorithm 1 presents the
PCA-Isolation Forest Hybrid Anomaly Detection Process, outlining the
sequential stages of preprocessing, feature normalization, dimensionality
reduction, anomaly scoring, and performance evaluation used to identify gait
irregularities in multivariate biomechanical data.

Algorithm 1 PCA-Isolation Forest Hybrid Anomaly Detection Process

Input: Gait dataset X € R™*Pwith 5,000 samples and 16 features

1. Data Preprocessing:
Remove missing values from X.

2. Feature Normalization:
For each feature x:
x'= (x - xmin)/(xmax - xmin)
Obtain normalized dataset X'.

3. Dimensionality Reduction (PCA):
Compute covariance matrix £y = ﬁ X' -XTX' -X).
Perform eigen-decomposition: Zyw; = 4;w;.
Select top kcomponents such that cumulative explained variance = 95.1%.
Project data: Z = X'W.
Reconstruct samples: X = ZW7.
Compute reconstruction error for each sample i:
1P o
Ei= Zj=1(xij - %)%
4. Anomaly Detection (Isolation Forest):
Train Isolation Forest with 100 trees, contamination = 0.10.

Compute anomaly score for each sample x:
_E(h(x)

s(x)y=2 <o .
Label sample as anomalous if s(x) > t.

5. Model Evaluation:
Compute:

Precision = ——,
TP+FP
TP
TP+FN’
F1=2x (PrecisionxRecall)
- (Precision+Recally’

ROC-AUC = area under ROC curve.

Recall =

6. Interpretation:
Visualize reconstruction error distribution, ROC curve, and confusion matrix.
Identify biomechanical features contributing most to high E;.

Output: Anomaly labels, performance metrics (Precision, Recall, F1, ROC-AUC), and feature-
level error analysis.
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Result

The dataset used in this study consisted of 115 valid responses collected from
participants in The Gambia, capturing perceptions, expectations, and readiness
toward metaverse-based digital governance. After preprocessing, which
included handling missing values, one-hot encoding of categorical attributes,
and feature standardization, the dataset was transformed into a high-
dimensional feature matrix. PCA was applied exclusively for visualization,
producing two principal components (PC1 and PC2) that reflected the most
significant variance structure in the reduced space. The PCA-transformed
dataset served as an interpretive layer for understanding the separation
between clusters, although the clustering itself was performed on the full
standardized feature space.

The hybrid anomaly detection framework, which integrates PCA for feature
compression and IF for anomaly identification, was implemented on the MGAD
dataset containing 5,000 gait observations with 16 biomechanical variables.
PCA was trained using only normal gait data (Label = 0), thereby capturing the
latent structure of normal locomotion patterns. The reconstruction errors
obtained from PCA served as anomaly indicators, which were subsequently
analyzed using the Isolation Forest algorithm to isolate potential gait anomalies.

The overall model performance is summarized in table 1. The proposed hybrid
PCA-IF model achieved an ROC-AUC of 0.912, indicating excellent separability
between normal and abnormal gait classes. The precision (0.879) and recall
(0.853) scores further demonstrate the model’s reliability in identifying true
anomalies without excessive false alarms. The F1-score of 0.866 reflects a
balanced performance between precision and sensitivity.

Table 1 Model Evaluation Summary for Hybrid PCA-Isolation Forest Approach

Metric Value
ROC-AUC 0.912
Precision 0.879
Recall 0.853
F1-Score 0.866
Contamination (IF) 0.10
PCA Components Retained 10
Total Explained Variance 0.951

The distribution of reconstruction errors across gait classes is depicted in figure
2. Normal gait samples (Label = 0) predominantly exhibit low reconstruction
errors, concentrated around the lower bound of the histogram. In contrast,
abnormal gait samples (Label = 1) show a noticeably broader and right-shifted
distribution, indicating larger deviations from the PCA-reconstructed normal
pattern. This distinct separation confirms the model’s ability to differentiate
between normal and abnormal gait dynamics based on the reconstruction of
biomechanical features.
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Figure 2 Distribution of Reconstruction Errors by Gait Class

The Receiver Operating Characteristic (ROC) curve presented in figure 3
provides an analytical view of the trade-off between the True Positive Rate
(TPR) and False Positive Rate (FPR) across multiple decision thresholds. The
hybrid PCA-Isolation Forest model demonstrates an Area Under the Curve
(AUC) of 0.912, which signifies an excellent level of classification performance
and a strong ability to discriminate between normal and abnormal gait patterns.
The initial steep ascent of the curve indicates that the model captures a large
proportion of true anomalies at relatively low false positive rates, emphasizing
its high sensitivity. As the curve plateaus, it reflects the model’s stability in
maintaining performance consistency across different threshold settings, further
confirming its robustness and reliability in anomaly detection tasks.

From a biomechanical and clinical perspective, these ROC characteristics are
particularly meaningful. The high AUC score implies that the model can detect
early deviations in gait behavior—a critical aspect in identifying potential motor
disorders, postural instabilities, or rehabilitation progress. The model’s low false
alarm tendency ensures that only clinically significant gait anomalies are
flagged, reducing unnecessary interventions in practical monitoring scenarios.
Therefore, the integration of PCA-based reconstruction error analysis and
Isolation Forest anomaly scoring provides a robust, interpretable, and data-
efficient framework that balances detection sensitivity with operational reliability,
making it well-suited for deployment in real-time gait assessment systems and
wearable healthcare applications.
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Figure 3 ROC Curve of PCA Reconstruction Error Combined with Isolation Forest
Classifier

Figure 4 presents the confusion matrix illustrating the classification outcomes of
the hybrid PCA-Isolation Forest model when distinguishing between normal
and abnormal gait patterns. Out of the total 5,000 gait samples, the model
correctly classified 885 instances of normal gait as non-anomalous (true
negatives), while 396 abnormal gait samples were accurately detected as
anomalies (true positives). Conversely, 103 normal samples were incorrectly
labeled as abnormal (false positives), and 3,616 abnormal samples were
misclassified as normal (false negatives). These results indicate that the model
demonstrates a strong ability to correctly identify normal gait patterns, although
a notable number of abnormal gait instances remain undetected. This
imbalance may arise from subtle gait deviations that fall within the
biomechanical variability of healthy motion, making them less distinguishable
by the unsupervised anomaly detection mechanism.

From a clinical and biomechanical standpoint, the presence of false negatives
highlights the inherent complexity of gait dynamics and the challenge of
distinguishing between mild motor irregularities and natural gait variability.
Nonetheless, the model’s high accuracy in identifying non-anomalous patterns
ensures reliability in screening large populations where the majority exhibit
normal gait. The combination of PCA for latent feature compression and
Isolation Forest for outlier isolation provides a balance between model
interpretability and computational efficiency. For practical applications, such as
rehabilitation monitoring or early detection of mobility impairments, further
calibration of the anomaly threshold could help reduce false negatives,
improving sensitivity to early-stage gait abnormalities while maintaining a low
false alarm rate.
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Figure 4 Confusion Matrix for Predicted vs. Actual Gait Anomaly Labels

The contribution of each gait variable to the reconstruction error was examined
to determine which biomechanical parameters were most influential in
distinguishing anomalous gait behavior. As presented in table 2, the Stance
Phase Duration recorded the highest mean reconstruction error (0.037089),
followed by Step Length (0.000918) and Stride Length (0.000556). These
variables represent key temporal—spatial components of gait, which are directly
linked to postural stability and locomotor control. The elevated reconstruction
error in stance phase duration suggests that even small deviations in the time
spent during the support phase of a step can significantly alter the gait pattern
from its learned normal representation. This indicates that the model is
particularly sensitive to timing-based abnormalities, which often manifest in
neurological or musculoskeletal impairments affecting balance and weight
transfer.

These findings are consistent with established biomechanical and clinical
literature, which identifies irregularities in the stance and swing phases as early
indicators of gait dysfunction, fatigue, or motor asymmetry. Variations in step
length and stride length further amplify these irregularities, often reflecting
compensatory adaptations made by individuals with motor control deficits. The
hybrid PCA-Isolation Forest model effectively captures such multidimensional
deviations, demonstrating its ability to uncover subtle kinematic and kinetic
inconsistencies. In practical applications, these results imply that continuous
monitoring of temporal gait features —particularly stance phase duration—could
serve as a valuable biomarker for early detection of movement disorders or
instability risks in real-world or clinical settings.

Table 2 Mean Reconstruction Error per Feature

Feature Mean Squared Error
Stance Phase Duration (s) 0.037089
Step Length (m) 0.000918
Stride Length (m) 0.000556
Swing Phase Duration (s) 0.000354
Avg. M-L GRF (N) 0.000187
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The findings of this study confirm that the proposed PCA—-Isolation Forest hybrid
model effectively differentiates between normal and abnormal gait profiles
within the MGAD dataset. By leveraging PCA for dimensionality reduction, the
model compresses complex multivariate gait data while preserving 95.1% of the
total variance, ensuring that essential biomechanical relationships remain
intact. This compression facilitates computational efficiency without
compromising physiological relevance. Subsequently, the Isolation Forest
algorithm operates on the PCA-based reconstruction errors, efficiently isolating
samples that exhibit statistically significant deviations from normal gait
dynamics. The resulting performance metrics—ROC-AUC of 0.912 and F1-
score of 0.866—highlight the model’s strong capacity to detect gait anomalies
with both accuracy and stability, reinforcing its reliability as an unsupervised
detection framework for biomechanical data.

Feature-level reconstruction analysis further underscores that stance phase
duration, step length, and stride length are the most discriminative parameters
contributing to gait irregularities. These temporal and spatial gait attributes align
with findings from clinical biomechanics, where disturbances in stance duration
and stride symmetry are often associated with impaired balance,
neuromuscular dysfunction, or compensatory motion mechanisms. The model’s
sensitivity to these features demonstrates its ability to capture subtle but
clinically meaningful deviations in locomotor control. Overall, the hybrid PCA—
Isolation Forest approach presents a robust, interpretable, and data-efficient
solution for automatic gait anomaly detection. Its unsupervised nature makes it
particularly well-suited for integration into real-time clinical monitoring systems,
rehabilitation analytics, or wearable gait assessment devices aimed at
continuous, non-invasive tracking of patient mobility and early detection of
abnormal movement patterns.

Discussion

The results of this study demonstrate that the hybrid PCA-Isolation Forest
framework is effective in detecting and characterizing gait anomalies within the
MGAD dataset, consistent with prior studies utilizing unsupervised learning and
dimensionality reduction for gait and motion analysis [17], [18], [19], [25]. By
employing PCA as a feature compression mechanism, the model retained
95.1% of the total variance, ensuring that essential biomechanical relationships
across gait parameters were preserved while substantially reducing
dimensional complexity, an approach validated in previous gait and biomedical
modeling studies [17], [19], [25]. This dimensionality reduction improved
computational efficiency and enhanced model interpretability, making it suitable
for clinical or real-time applications [4], [5], [20].

The subsequent application of the Isolation Forest algorithm on PCA-derived
reconstruction errors enabled precise identification of samples exhibiting
statistically significant deviations from normal gait patterns, consistent with prior
findings that demonstrate the algorithm’s effectiveness for anomaly detection in
multivariate biomedical and industrial datasets [15], [18]. The model achieved a
ROC-AUC of 0.912 and an F1-score of 0.866, indicating strong discriminative
capability and balanced sensitivity—specificity performance, comparable to
outcomes reported in related gait recognition and classification research using
unsupervised models [13], [20], [25].
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A deeper analysis of reconstruction error distributions revealed that normal gait
samples were tightly clustered with low reconstruction errors, whereas
abnormal gait samples exhibited broader, higher-error distributions. This
confirmed the model’s ability to generalize from normal biomechanical patterns,
consistent with the behavior of unsupervised anomaly detection frameworks
[14], [15], [25]. The confusion matrix analysis further validated these findings,
showing high accuracy in classifying normal gaits and acceptable performance
in detecting abnormal ones, despite a moderate number of false negatives.
These borderline gait conditions likely represent subtle or early-stage
impairments, as previously observed in neurodegenerative gait studies and
Parkinsonian motion research [2], [3], [8].

At the feature level, the stance phase duration emerged as the most influential
determinant of reconstruction error (mean squared error = 0.037089), followed
by step length and stride length. These findings align with prior biomechanical
research identifying temporal—spatial parameters, particularly stance duration
and step timing, as critical indicators of gait dysfunction, balance deficits, and
neuromuscular instability [1], [5], [9], [10]. Variability in gait cycles, especially
during the stance and swing phases, has been linked to Parkinson’s disease,
stroke, and musculoskeletal asymmetry [2], [3], [8]. The model’s sensitivity to
these features demonstrates its potential to detect micro-level deviations in gait
rhythm and coordination that are often difficult to identify through traditional
visual or statistical methods [4], [6], [7].

From a practical standpoint, the hybrid PCA-Isolation Forest model offers
several advantages. First, it is unsupervised, eliminating the need for labeled
clinical data, which are often limited in gait research [13], [17]. Second, its
reliance on reconstruction errors provides an intuitive diagnostic signal, as
higher reconstruction errors correspond to more anomalous movement
patterns, an approach validated in autoencoder- and manifold-based gait
studies [14], [25]. Third, the model is lightweight and interpretable, making it
suitable for integration into wearable gait monitoring systems or loT-based
mobility trackers [6], [21], [22], [23]. Such systems could continuously monitor
gait and trigger alerts when anomalies exceed thresholds, supporting early
intervention and personalized rehabilitation [5], [24].

However, certain limitations must be acknowledged. The use of PCA as a linear
feature compressor may restrict its ability to capture nonlinear gait dynamics in
complex data, as discussed in autoencoder-based and deep learning anomaly
detection frameworks [14], [16], [25]. Additionally, the higher number of false
negatives suggests the need for adaptive thresholding or ensemble anomaly
detection strategies to improve sensitivity [18], [19]. Further validation using
diverse populations, sensor modalities, and environments would enhance the
model’s generalizability and clinical robustness [4], [5], [21], [23].

In summary, the discussion highlights that the proposed hybrid PCA-Isolation
Forest framework provides a robust, interpretable, and scalable solution for
unsupervised gait anomaly detection [17]-[20], [25]. By combining statistical
reconstruction analysis with tree-based isolation mechanisms, the model
bridges the gap between computational efficiency and biomechanical
interpretability, establishing a strong foundation for future research in
automated gait assessment and intelligent healthcare monitoring [4], [5], [20],
[21].
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Conclusion

This study presented a hybrid PCA-Isolation Forest framework for automated
gait anomaly detection using the MGAD dataset, comprising 5,000 samples of
multidimensional biomechanical gait parameters. The experimental results
demonstrated that the model effectively differentiated between normal and
abnormal gait behaviors with strong accuracy and interpretability. By employing
PCA for feature compression, the model retained 95.1% of the total data
variance, simplifying the feature space while preserving biomechanical integrity.
The subsequent use of Isolation Forest on PCA-derived reconstruction errors
successfully isolated gait samples exhibiting significant deviations from the
learned normal gait pattern.

Quantitative evaluation revealed a ROC-AUC of 0.912 and an F1-score of
0.866, confirming that the proposed method achieves a robust balance between
detection sensitivity and reliability. The feature-level analysis identified stance
phase duration, step length, and stride length as the most influential variables
in distinguishing gait anomalies, aligning with established biomechanical
theories that associate stance irregularities with impaired balance and motor
control. These findings affirm the model’s ability to capture clinically relevant
gait deviations and its potential as a data-driven diagnostic tool.

Beyond its technical performance, the proposed framework offers practical
advantages for real-world applications. Its unsupervised nature eliminates the
dependence on labeled data, enabling continuous, real-time monitoring in
clinical or wearable settings. The model’s lightweight computational design and
high interpretability make it suitable for integration into rehabilitation systems,
fall-risk monitoring platforms, and loT-based mobility assessment devices.
Consequently, this approach bridges the gap between traditional biomechanical
analysis and modern machine learning techniques, providing a scalable solution
for intelligent healthcare.

For future research, several directions are proposed. Incorporating Deep
Autoencoders or Variational Autoencoders could enhance the model’s ability to
capture nonlinear relationships among gait features, improving sensitivity to
subtle abnormalities. Additionally, expanding the dataset to include diverse
subjects, environments, and sensor modalities would improve generalizability
and clinical robustness. Further exploration of hybrid ensemble models
combining multiple anomaly detection algorithms may also yield performance
gains. Overall, the findings of this study establish a solid foundation for
developing advanced, interpretable, and real-time gait anomaly detection
systems that contribute to preventive healthcare and mobility analytics.
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