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ABSTRACT 

Human gait analysis plays a vital role in assessing locomotor function, postural 

stability, and early detection of motor impairments. This study proposes an 

unsupervised hybrid anomaly detection framework that integrates PCA and Isolation 

Forest (IF) to automatically identify abnormal gait patterns using a Multivariate 

Biomechanical Dataset (MGAD) containing 5,000 gait samples. PCA was utilized to 

reduce dimensionality and compress correlated gait features while retaining 95.1% of 

the total variance, thereby preserving essential biomechanical information. The 

reconstruction errors obtained from PCA were subsequently analyzed using Isolation 

Forest to isolate anomalous gait instances. Experimental results demonstrate that the 

hybrid PCA–IF model effectively differentiates between normal and abnormal gait 

behaviors, achieving an ROC-AUC of 0.912 and an F1-score of 0.866, indicating 

strong discriminative capability and model stability. Feature-level reconstruction 

analysis revealed that stance phase duration, step length, and stride length are the 

most influential determinants of gait irregularities, aligning with established clinical 

findings in gait biomechanics. The proposed framework is computationally efficient, 

interpretable, and fully unsupervised, making it suitable for real-time clinical 

assessment, rehabilitation monitoring, and wearable healthcare applications. These 

findings highlight the potential of hybrid statistical–machine learning models in 

advancing automated gait diagnostics and intelligent mobility analytics. 

Keywords Gait Anomaly Detection, Principal Component Analysis, Isolation Forest, 

Biomechanical Analysis, Machine Learning 

INTRODUCTION 

Human gait is a fundamental aspect of locomotion that reflects the coordinated 

interaction between the musculoskeletal and nervous systems [1]. It serves as 

a vital indicator of a person’s motor control, balance, and neurological health 

[2]. Subtle deviations in gait parameters, such as irregular stride length, 

asymmetrical stance duration, or abnormal joint movements, can signify the 

early onset of neuromuscular disorders, balance impairments, or degenerative 

conditions like Parkinson’s disease [3]. Consequently, accurate gait 

assessment plays an essential role in clinical diagnostics, rehabilitation 

monitoring, and preventive healthcare. In recent years, the growing integration 

of biomechanics with machine learning techniques has enabled a more 

objective and data-driven understanding of gait dynamics, overcoming the 

limitations of traditional observational assessments [4]. 

Conventional gait analysis methods largely depend on visual inspection or 

manually interpreted sensor recordings, which are inherently subjective, time-

consuming, and limited in scalability [5]. While advanced sensor technologies 
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and motion capture systems have improved data acquisition accuracy, the 

challenge lies in developing computational models capable of automatically 

identifying abnormal gait behaviors from high-dimensional data [6]. Supervised 

learning algorithms such as Support Vector Machines, Random Forests, and 

Convolutional Neural Networks have been successfully applied to gait 

classification tasks; however, their effectiveness relies heavily on the availability 

of large, labeled datasets [7]. In clinical and real-world scenarios, labeled gait 

anomaly data are often scarce or inconsistent, creating the need for 

unsupervised approaches that can learn from normal gait patterns and 

autonomously detect deviations indicative of anomalies. 

Unsupervised anomaly detection methods have gained significant attention for 

their capability to model the intrinsic distribution of normal behavior and identify 

deviations without requiring labeled samples [8]. Among these, techniques such 

as Autoencoders, One-Class SVM, and Isolation Forest have shown promise in 

medical anomaly detection tasks. However, many of these approaches involve 

complex model architectures that compromise interpretability and 

computational efficiency. To address these challenges, this study introduces a 

hybrid anomaly detection framework that integrates Principal Component 

Analysis (PCA) and IF for automated gait anomaly detection. PCA is employed 

to compress and reconstruct multivariate gait data while retaining 95.1% of the 

total variance, ensuring that essential biomechanical information is preserved. 

The reconstruction errors derived from PCA are then used as inputs for the 

Isolation Forest algorithm, which isolates gait instances exhibiting statistically 

significant deviations from the learned normal pattern. 

The proposed hybrid PCA such as Isolation Forest model was evaluated using 

the Multivariate Gait Analysis Dataset (MGAD), which consists of 5,000 gait 

samples and 16 biomechanical variables, including stride length, stance and 

swing phase durations, joint angles, and ground reaction forces. The 

experimental results demonstrated that the model achieved a ROC-AUC of 

0.912 and an F1-score of 0.866, confirming its effectiveness in distinguishing 

normal gait behaviors from abnormal ones. Feature-level reconstruction 

analysis revealed that stance phase duration, step length, and stride length 

were the most influential parameters in anomaly detection, consistent with prior 

clinical research highlighting temporal-spatial irregularities as indicators of 

postural instability and motor dysfunction. 

This study contributes to the growing body of research in gait anomaly detection 

by proposing an interpretable and computationally efficient hybrid framework. 

The integration of PCA and Isolation Forest enables robust detection of gait 

anomalies without the need for labeled data, offering significant potential for 

real-time deployment in clinical environments, rehabilitation monitoring, and 

wearable health systems. Furthermore, the findings provide valuable insights 

into biomechanical parameters most indicative of abnormal gait behavior, 

bridging the gap between machine learning-based analytics and clinical gait 

interpretation. 

Literature Review 

Gait analysis has long been recognized as a fundamental aspect of clinical 

biomechanics. It serves as a critical indicator for evaluating motor control, 

postural stability, and neuromuscular coordination. Early studies established 
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that temporal variability in gait patterns can serve as an early biomarker for 

neurological and balance impairments, while subsequent research highlighted 

the importance of kinematic and kinetic parameters such as stride length, 

stance phase duration, and joint angles in understanding locomotor control [9], 

[10]. Traditional gait assessment methods, however, relied heavily on visual 

observation or laboratory-based motion capture systems, which limited 

objectivity, scalability, and accessibility in long-term monitoring. 

The emergence of Machine Learning (ML) and wearable sensor technologies 

has significantly advanced gait analysis by enabling automated and data-driven 

modeling of human locomotion. Early implementations using on-body 

accelerometers combined with ML classifiers demonstrated that statistical 

learning techniques could enhance the precision of activity recognition [11]. 

Similarly, sensor-based algorithms have been developed to estimate gait 

temporal parameters with high accuracy, marking a transition from manual 

interpretation toward computationally driven gait analytics [12]. 

Despite these advancements, supervised classification techniques such as 

Support Vector Machines (SVM), Random Forests, and Convolutional Neural 

Networks (CNNs) continue to depend heavily on labeled datasets. Applications 

of CNNs for gait recognition using pose estimation from video sequences have 

shown strong performance, but their reliance on large annotated datasets limits 

clinical feasibility [13]. This challenge has prompted a growing shift toward 

unsupervised anomaly detection approaches that can autonomously learn 

normal motion patterns and identify deviations without prior labeling. 

Among unsupervised methods, Autoencoders have shown effectiveness in 

learning compressed latent representations of normal gait signals. Studies have 

demonstrated that reconstruction error from nonlinear Autoencoders can 

accurately identify anomalous sensor readings [14]. However, deep 

Autoencoder architectures often involve high computational complexity and 

limited interpretability, which present challenges for clinical adoption. To 

overcome these limitations, the Isolation Forest (IF) algorithm has emerged as 

a lightweight and efficient alternative [15]. By recursively partitioning data, IF 

isolates anomalies with minimal training cost and strong scalability. The 

approach has been validated as a robust technique for detecting abnormal 

physiological patterns in biomedical applications [16]. 

Parallel to these developments, Principal Component Analysis (PCA) has been 

widely utilized for feature extraction and dimensionality reduction in gait 

analysis. Empirical findings indicate that PCA can differentiate between healthy 

and pathological gait patterns by identifying principal modes of motion variability 

[17]. Further research combining PCA with IF has achieved a balance between 

interpretability and detection precision, which makes such hybrid frameworks 

particularly relevant for biomechanical gait anomaly detection [18]. Additional 

studies employing PCA-based hybrid modeling have also confirmed that low-

dimensional representations can improve sensitivity in detecting subtle 

behavioral deviations [19]. 

Recent research has extended these techniques to real-world applications. 

Unsupervised ML models based on wearable sensors have achieved high 

accuracy in detecting gait anomalies among patients with neurological 

conditions [20]. Other approaches integrating RGB-D video data with LSTM 
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Autoencoders have enabled real-time, non-invasive detection of gait 

abnormalities during daily activities [21]. Similarly, algorithms such as IF and 

One-Class SVM applied to smart-cane sensor data have been effective in 

monitoring gait and tremor patterns among elderly populations [22]. Advances 

in real-time gait phase detection have also demonstrated the potential of 

unsupervised neural networks for adaptive rehabilitation systems [23]. In 

addition, multimodal frameworks that fuse 3D vision sensors with anomaly 

detection algorithms have been shown to enhance fall-risk assessment 

accuracy in older adults [24]. Hybrid unsupervised frameworks that combine 

PCA with deep Autoencoders have further improved generalization and 

interpretability in biomedical time-series anomaly detection [25]. 

Despite the notable progress achieved, ongoing challenges remain in balancing 

accuracy, interpretability, and computational efficiency. Deep models tend to 

outperform classical approaches in terms of detection accuracy but are less 

explainable and demand extensive computational resources. In contrast, 

simpler algorithms offer higher transparency but may underperform when 

dealing with complex and high-dimensional biomechanical data. 

To bridge this gap, the present study introduces a hybrid PCA–Isolation Forest 

model tailored for multivariate gait anomaly detection. PCA is used to compress 

gait features while preserving 95.1% of the total variance, whereas Isolation 

Forest identifies abnormal samples efficiently with minimal computational 

overhead. This integration leverages the complementary strengths of linear 

feature extraction and ensemble-based anomaly detection, offering a 

transparent, data-efficient, and clinically viable framework for automated gait 

analysis. 

By positioning itself at the intersection of biomechanical gait research and 

unsupervised machine learning, this study contributes to the growing domain of 

intelligent healthcare analytics. The proposed hybrid framework not only 

enhances anomaly detection accuracy but also improves interpretability, 

supporting its integration into wearable monitoring systems, rehabilitation 

analytics, and real-time clinical gait assessment applications. 

Methods 

This study employed a hybrid unsupervised anomaly detection framework that 

combines PCA and IF to identify gait anomalies in multivariate biomechanical 

data. The research methodology follows the workflow depicted in figure 1 

(Research Steps), which includes five main stages: data preprocessing, feature 

normalization, dimensionality reduction using PCA, anomaly detection through 

Isolation Forest, and performance evaluation using statistical metrics and 

visualization. This integrated framework was specifically designed to maintain 

interpretability, efficiency, and accuracy in unsupervised gait anomaly detection. 
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Figure 1 Research Step 

The dataset used in this study is the MGAD, which consists of 5,000 gait 

samples containing 16 biomechanical parameters, such as stride length, step 

length, stance phase duration, swing time, cadence, joint angles, and ground 

reaction forces [26], [27]. Each observation was labeled as normal (0) or 

abnormal (1) to enable model validation. Before model training, data 

preprocessing was carried out to remove missing values and normalize feature 

scales using the Min–Max normalization, defined as: 

𝑥′ =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
  (1) 

𝑥′ is the normalized value, 𝑥 the original feature, and 𝑥𝑚𝑖𝑛  𝑥𝑚𝑎𝑥 represents the 

minimum and maximum feature values, respectively. This transformation 

ensures uniform feature contribution during PCA projection and prevents bias 

due to differing units or magnitudes. 

PCA was applied to reduce the dimensionality of the gait dataset while 

preserving the essential biomechanical variance. Given an input data matrix 𝑋 ∈
𝑅𝑛×𝑝 with 𝑛 samples and 𝑝 features, PCA computes orthogonal 

transformations to derive a set of Principal Components (PCs) [28], [29]. The 

transformation is mathematically expressed as: 

𝑍 =  𝑋𝑊  (2) 

𝑍 denotes the transformed data, and 𝑊 is the matrix of eigenvectors obtained 

from the covariance matrix 𝛴𝑋. The covariance matrix is computed as: 

𝛴𝑋 =
1

𝑛 − 1
(𝑋 − 𝑋)

𝑇
(𝑋 − 𝑋) (3) 
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and the eigen-decomposition of 𝛴𝑋 yields eigenvalues 𝜆𝑖 and 

eigenvectors 𝑤𝑖 that capture the directions of maximum variance. The number 

of retained principal components 𝑘 was determined by ensuring that the 

cumulative explained variance ratio exceeded 95.1%, preserving most of the 

gait information while reducing dimensionality. The PCA model was trained 

using only normal gait samples to capture the intrinsic structure of normal 

locomotion [30]. Once trained, the model reconstructed all gait samples and 

computed the reconstruction error for each sample using the following 

expression: 

𝐸𝑖 =
1

𝑝
∑(𝑥𝑖𝑗 − 𝑥𝑖𝑗̂)

2

𝑝

𝑗=1

 (4) 

𝐸𝑖 is the reconstruction error of the 𝑖-th sample, 𝑥𝑖𝑗 is the original feature value, 

and 𝑥𝑖𝑗 is the reconstructed value obtained through inverse PCA 

transformation. A high reconstruction error indicates that the gait pattern 

deviates significantly from the normal manifold, suggesting a potential anomaly. 

The reconstruction error values were then used as input to the Isolation 

Forest algorithm for anomaly detection. IF isolates anomalies by recursively 

partitioning the data through random feature and split value selection. The 

anomaly score of a sample 𝑥 is defined as: 

𝑠(𝑥) = 2
−

𝐸(ℎ(𝑥))
𝑐(𝑛)  

(5) 

𝐸(ℎ(𝑥)) denotes the average path length of the sample 𝑥 over an ensemble of 

binary trees, and 𝑐(𝑛) represents the average path length in a randomly 

partitioned binary tree of size 𝑛. Samples with shorter average path lengths are 

more likely to be anomalies. In this study, the Isolation Forest was configured 

with 100 trees and a contamination rate of 0.10, corresponding to the estimated 

proportion of abnormal gait samples in the dataset. 

The model’s performance was evaluated using several standard metrics 

derived from the confusion matrix, including Precision, Recall, F1-score, and 

the Area Under the Receiver Operating Characteristic Curve (ROC-AUC). 

These metrics are defined as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 𝐹1 = 2 ×

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (6) 

𝑇𝑃, 𝐹𝑃, and 𝐹𝑁 represent true positives, false positives, and false negatives, 

respectively. The ROC-AUC metric measures the model’s ability to discriminate 

between normal and abnormal gait samples across varying decision thresholds. 

The hybrid PCA–IF model achieved an ROC-AUC score of 0.912 and an F1-

score of 0.866, demonstrating excellent discriminative capability between 

normal and abnormal gait profiles. Visualization analyses further supported the 

model’s effectiveness: the distribution of reconstruction errors showed clear 

separation between normal and abnormal classes, the ROC curve illustrated 

high sensitivity with minimal false positives, and the confusion matrix confirmed 

balanced classification performance. The feature-level reconstruction 

analysis identified that stance phase duration contributed the most to overall 

reconstruction error (𝐸 = 0.037089), followed by step length (𝐸 = 0.000918) and 
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stride length (𝐸 = 0.000556). These findings align with clinical gait research 

emphasizing that temporal irregularities are among the earliest indicators of 

locomotor instability. 

In conclusion, the methodological framework integrates PCA and Isolation 

Forest into a cohesive hybrid model that is both interpretable and data-efficient. 

PCA captures the latent manifold of normal gait mechanics, while the Isolation 

Forest isolates outliers that deviate significantly from that manifold. The 

combination allows robust detection of abnormal gait behaviors without the 

need for labeled data, making it suitable for real-time clinical 

applications, rehabilitation monitoring, and wearable healthcare 

systems focused on continuous movement analysis. Algorithm 1 presents the 

PCA–Isolation Forest Hybrid Anomaly Detection Process, outlining the 

sequential stages of preprocessing, feature normalization, dimensionality 

reduction, anomaly scoring, and performance evaluation used to identify gait 

irregularities in multivariate biomechanical data. 

Algorithm 1 PCA–Isolation Forest Hybrid Anomaly Detection Process 

Input: Gait dataset 𝑋 ∈ ℝ𝑛×𝑝with 5,000 samples and 16 features 

1. Data Preprocessing: 

 Remove missing values from 𝑋. 

2. Feature Normalization: 

 For each feature 𝑥: 

  𝑥′ = (𝑥 − 𝑥min)/(𝑥max − 𝑥min) 

 Obtain normalized dataset 𝑋′. 

3. Dimensionality Reduction (PCA): 

 Compute covariance matrix Σ𝑋 =
1

𝑛−1
(𝑋′ − 𝑋̄)𝑇(𝑋′ − 𝑋̄). 

 Perform eigen-decomposition: Σ𝑋𝑤𝑖 = 𝜆𝑖𝑤𝑖. 

 Select top 𝑘components such that cumulative explained variance ≥ 95.1%. 

 Project data: 𝑍 = 𝑋′𝑊. 

 Reconstruct samples: 𝑋̂ = 𝑍𝑊𝑇. 

 Compute reconstruction error for each sample 𝑖: 

  𝐸𝑖 =
1

𝑝
∑ (

𝑝

𝑗=1
𝑥𝑖𝑗 − 𝑥̂𝑖𝑗)2. 

4. Anomaly Detection (Isolation Forest): 

 Train Isolation Forest with 100 trees, contamination = 0.10. 

 Compute anomaly score for each sample 𝑥: 

  𝑠(𝑥) = 2
−

𝐸(ℎ(𝑥))

𝑐(𝑛) . 

 Label sample as anomalous if 𝑠(𝑥) > 𝜏. 

5. Model Evaluation: 

 Compute: 

  Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
, 

  Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
, 

  F1 = 2 ×
(Precision×Recall)
(Precision+Recall)

, 

  ROC-AUC = area under ROC curve. 

6. Interpretation: 

 Visualize reconstruction error distribution, ROC curve, and confusion matrix. 

 Identify biomechanical features contributing most to high 𝐸𝑖. 

Output: Anomaly labels, performance metrics (Precision, Recall, F1, ROC-AUC), and feature-

level error analysis. 
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Result  

The dataset used in this study consisted of 115 valid responses collected from 

participants in The Gambia, capturing perceptions, expectations, and readiness 

toward metaverse-based digital governance. After preprocessing, which 

included handling missing values, one-hot encoding of categorical attributes, 

and feature standardization, the dataset was transformed into a high-

dimensional feature matrix. PCA was applied exclusively for visualization, 

producing two principal components (PC1 and PC2) that reflected the most 

significant variance structure in the reduced space. The PCA-transformed 

dataset served as an interpretive layer for understanding the separation 

between clusters, although the clustering itself was performed on the full 

standardized feature space. 

The hybrid anomaly detection framework, which integrates PCA for feature 

compression and IF for anomaly identification, was implemented on the MGAD 

dataset containing 5,000 gait observations with 16 biomechanical variables. 

PCA was trained using only normal gait data (Label = 0), thereby capturing the 

latent structure of normal locomotion patterns. The reconstruction errors 

obtained from PCA served as anomaly indicators, which were subsequently 

analyzed using the Isolation Forest algorithm to isolate potential gait anomalies. 

The overall model performance is summarized in table 1. The proposed hybrid 

PCA–IF model achieved an ROC-AUC of 0.912, indicating excellent separability 

between normal and abnormal gait classes. The precision (0.879) and recall 

(0.853) scores further demonstrate the model’s reliability in identifying true 

anomalies without excessive false alarms. The F1-score of 0.866 reflects a 

balanced performance between precision and sensitivity. 

Table 1 Model Evaluation Summary for Hybrid PCA–Isolation Forest Approach 

Metric Value 

ROC-AUC 0.912 

Precision 0.879 

Recall 0.853 

F1-Score 0.866 

Contamination (IF) 0.10 

PCA Components Retained 10 

Total Explained Variance 0.951 

The distribution of reconstruction errors across gait classes is depicted in figure 

2. Normal gait samples (Label = 0) predominantly exhibit low reconstruction 

errors, concentrated around the lower bound of the histogram. In contrast, 

abnormal gait samples (Label = 1) show a noticeably broader and right-shifted 

distribution, indicating larger deviations from the PCA-reconstructed normal 

pattern. This distinct separation confirms the model’s ability to differentiate 

between normal and abnormal gait dynamics based on the reconstruction of 

biomechanical features. 
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Figure 2 Distribution of Reconstruction Errors by Gait Class 

The Receiver Operating Characteristic (ROC) curve presented in figure 3 

provides an analytical view of the trade-off between the True Positive Rate 

(TPR) and False Positive Rate (FPR) across multiple decision thresholds. The 

hybrid PCA–Isolation Forest model demonstrates an Area Under the Curve 

(AUC) of 0.912, which signifies an excellent level of classification performance 

and a strong ability to discriminate between normal and abnormal gait patterns. 

The initial steep ascent of the curve indicates that the model captures a large 

proportion of true anomalies at relatively low false positive rates, emphasizing 

its high sensitivity. As the curve plateaus, it reflects the model’s stability in 

maintaining performance consistency across different threshold settings, further 

confirming its robustness and reliability in anomaly detection tasks. 

From a biomechanical and clinical perspective, these ROC characteristics are 

particularly meaningful. The high AUC score implies that the model can detect 

early deviations in gait behavior—a critical aspect in identifying potential motor 

disorders, postural instabilities, or rehabilitation progress. The model’s low false 

alarm tendency ensures that only clinically significant gait anomalies are 

flagged, reducing unnecessary interventions in practical monitoring scenarios. 

Therefore, the integration of PCA-based reconstruction error analysis and 

Isolation Forest anomaly scoring provides a robust, interpretable, and data-

efficient framework that balances detection sensitivity with operational reliability, 

making it well-suited for deployment in real-time gait assessment systems and 

wearable healthcare applications. 
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Figure 3 ROC Curve of PCA Reconstruction Error Combined with Isolation Forest 

Classifier 

Figure 4 presents the confusion matrix illustrating the classification outcomes of 

the hybrid PCA–Isolation Forest model when distinguishing between normal 

and abnormal gait patterns. Out of the total 5,000 gait samples, the model 

correctly classified 885 instances of normal gait as non-anomalous (true 

negatives), while 396 abnormal gait samples were accurately detected as 

anomalies (true positives). Conversely, 103 normal samples were incorrectly 

labeled as abnormal (false positives), and 3,616 abnormal samples were 

misclassified as normal (false negatives). These results indicate that the model 

demonstrates a strong ability to correctly identify normal gait patterns, although 

a notable number of abnormal gait instances remain undetected. This 

imbalance may arise from subtle gait deviations that fall within the 

biomechanical variability of healthy motion, making them less distinguishable 

by the unsupervised anomaly detection mechanism. 

From a clinical and biomechanical standpoint, the presence of false negatives 

highlights the inherent complexity of gait dynamics and the challenge of 

distinguishing between mild motor irregularities and natural gait variability. 

Nonetheless, the model’s high accuracy in identifying non-anomalous patterns 

ensures reliability in screening large populations where the majority exhibit 

normal gait. The combination of PCA for latent feature compression and 

Isolation Forest for outlier isolation provides a balance between model 

interpretability and computational efficiency. For practical applications, such as 

rehabilitation monitoring or early detection of mobility impairments, further 

calibration of the anomaly threshold could help reduce false negatives, 

improving sensitivity to early-stage gait abnormalities while maintaining a low 

false alarm rate. 
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Figure 4 Confusion Matrix for Predicted vs. Actual Gait Anomaly Labels 

The contribution of each gait variable to the reconstruction error was examined 

to determine which biomechanical parameters were most influential in 

distinguishing anomalous gait behavior. As presented in table 2, the Stance 

Phase Duration recorded the highest mean reconstruction error (0.037089), 

followed by Step Length (0.000918) and Stride Length (0.000556). These 

variables represent key temporal–spatial components of gait, which are directly 

linked to postural stability and locomotor control. The elevated reconstruction 

error in stance phase duration suggests that even small deviations in the time 

spent during the support phase of a step can significantly alter the gait pattern 

from its learned normal representation. This indicates that the model is 

particularly sensitive to timing-based abnormalities, which often manifest in 

neurological or musculoskeletal impairments affecting balance and weight 

transfer. 

These findings are consistent with established biomechanical and clinical 

literature, which identifies irregularities in the stance and swing phases as early 

indicators of gait dysfunction, fatigue, or motor asymmetry. Variations in step 

length and stride length further amplify these irregularities, often reflecting 

compensatory adaptations made by individuals with motor control deficits. The 

hybrid PCA–Isolation Forest model effectively captures such multidimensional 

deviations, demonstrating its ability to uncover subtle kinematic and kinetic 

inconsistencies. In practical applications, these results imply that continuous 

monitoring of temporal gait features—particularly stance phase duration—could 

serve as a valuable biomarker for early detection of movement disorders or 

instability risks in real-world or clinical settings. 

Table 2 Mean Reconstruction Error per Feature 

Feature Mean Squared Error 

Stance Phase Duration (s) 0.037089 

Step Length (m) 0.000918 

Stride Length (m) 0.000556 

Swing Phase Duration (s) 0.000354 

Avg. M–L GRF (N) 0.000187 
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The findings of this study confirm that the proposed PCA–Isolation Forest hybrid 

model effectively differentiates between normal and abnormal gait profiles 

within the MGAD dataset. By leveraging PCA for dimensionality reduction, the 

model compresses complex multivariate gait data while preserving 95.1% of the 

total variance, ensuring that essential biomechanical relationships remain 

intact. This compression facilitates computational efficiency without 

compromising physiological relevance. Subsequently, the Isolation Forest 

algorithm operates on the PCA-based reconstruction errors, efficiently isolating 

samples that exhibit statistically significant deviations from normal gait 

dynamics. The resulting performance metrics—ROC-AUC of 0.912 and F1-

score of 0.866—highlight the model’s strong capacity to detect gait anomalies 

with both accuracy and stability, reinforcing its reliability as an unsupervised 

detection framework for biomechanical data. 

Feature-level reconstruction analysis further underscores that stance phase 

duration, step length, and stride length are the most discriminative parameters 

contributing to gait irregularities. These temporal and spatial gait attributes align 

with findings from clinical biomechanics, where disturbances in stance duration 

and stride symmetry are often associated with impaired balance, 

neuromuscular dysfunction, or compensatory motion mechanisms. The model’s 

sensitivity to these features demonstrates its ability to capture subtle but 

clinically meaningful deviations in locomotor control. Overall, the hybrid PCA–

Isolation Forest approach presents a robust, interpretable, and data-efficient 

solution for automatic gait anomaly detection. Its unsupervised nature makes it 

particularly well-suited for integration into real-time clinical monitoring systems, 

rehabilitation analytics, or wearable gait assessment devices aimed at 

continuous, non-invasive tracking of patient mobility and early detection of 

abnormal movement patterns. 

Discussion 

The results of this study demonstrate that the hybrid PCA–Isolation Forest 

framework is effective in detecting and characterizing gait anomalies within the 

MGAD dataset, consistent with prior studies utilizing unsupervised learning and 

dimensionality reduction for gait and motion analysis [17], [18], [19], [25]. By 

employing PCA as a feature compression mechanism, the model retained 

95.1% of the total variance, ensuring that essential biomechanical relationships 

across gait parameters were preserved while substantially reducing 

dimensional complexity, an approach validated in previous gait and biomedical 

modeling studies [17], [19], [25]. This dimensionality reduction improved 

computational efficiency and enhanced model interpretability, making it suitable 

for clinical or real-time applications [4], [5], [20]. 

The subsequent application of the Isolation Forest algorithm on PCA-derived 

reconstruction errors enabled precise identification of samples exhibiting 

statistically significant deviations from normal gait patterns, consistent with prior 

findings that demonstrate the algorithm’s effectiveness for anomaly detection in 

multivariate biomedical and industrial datasets [15], [18]. The model achieved a 

ROC-AUC of 0.912 and an F1-score of 0.866, indicating strong discriminative 

capability and balanced sensitivity–specificity performance, comparable to 

outcomes reported in related gait recognition and classification research using 

unsupervised models [13], [20], [25]. 
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A deeper analysis of reconstruction error distributions revealed that normal gait 

samples were tightly clustered with low reconstruction errors, whereas 

abnormal gait samples exhibited broader, higher-error distributions. This 

confirmed the model’s ability to generalize from normal biomechanical patterns, 

consistent with the behavior of unsupervised anomaly detection frameworks 

[14], [15], [25]. The confusion matrix analysis further validated these findings, 

showing high accuracy in classifying normal gaits and acceptable performance 

in detecting abnormal ones, despite a moderate number of false negatives. 

These borderline gait conditions likely represent subtle or early-stage 

impairments, as previously observed in neurodegenerative gait studies and 

Parkinsonian motion research [2], [3], [8]. 

At the feature level, the stance phase duration emerged as the most influential 

determinant of reconstruction error (mean squared error = 0.037089), followed 

by step length and stride length. These findings align with prior biomechanical 

research identifying temporal–spatial parameters, particularly stance duration 

and step timing, as critical indicators of gait dysfunction, balance deficits, and 

neuromuscular instability [1], [5], [9], [10]. Variability in gait cycles, especially 

during the stance and swing phases, has been linked to Parkinson’s disease, 

stroke, and musculoskeletal asymmetry [2], [3], [8]. The model’s sensitivity to 

these features demonstrates its potential to detect micro-level deviations in gait 

rhythm and coordination that are often difficult to identify through traditional 

visual or statistical methods [4], [6], [7]. 

From a practical standpoint, the hybrid PCA–Isolation Forest model offers 

several advantages. First, it is unsupervised, eliminating the need for labeled 

clinical data, which are often limited in gait research [13], [17]. Second, its 

reliance on reconstruction errors provides an intuitive diagnostic signal, as 

higher reconstruction errors correspond to more anomalous movement 

patterns, an approach validated in autoencoder- and manifold-based gait 

studies [14], [25]. Third, the model is lightweight and interpretable, making it 

suitable for integration into wearable gait monitoring systems or IoT-based 

mobility trackers [6], [21], [22], [23]. Such systems could continuously monitor 

gait and trigger alerts when anomalies exceed thresholds, supporting early 

intervention and personalized rehabilitation [5], [24]. 

However, certain limitations must be acknowledged. The use of PCA as a linear 

feature compressor may restrict its ability to capture nonlinear gait dynamics in 

complex data, as discussed in autoencoder-based and deep learning anomaly 

detection frameworks [14], [16], [25]. Additionally, the higher number of false 

negatives suggests the need for adaptive thresholding or ensemble anomaly 

detection strategies to improve sensitivity [18], [19]. Further validation using 

diverse populations, sensor modalities, and environments would enhance the 

model’s generalizability and clinical robustness [4], [5], [21], [23]. 

In summary, the discussion highlights that the proposed hybrid PCA–Isolation 

Forest framework provides a robust, interpretable, and scalable solution for 

unsupervised gait anomaly detection [17]–[20], [25]. By combining statistical 

reconstruction analysis with tree-based isolation mechanisms, the model 

bridges the gap between computational efficiency and biomechanical 

interpretability, establishing a strong foundation for future research in 

automated gait assessment and intelligent healthcare monitoring [4], [5], [20], 

[21]. 
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Conclusion 

This study presented a hybrid PCA–Isolation Forest framework for automated 

gait anomaly detection using the MGAD dataset, comprising 5,000 samples of 

multidimensional biomechanical gait parameters. The experimental results 

demonstrated that the model effectively differentiated between normal and 

abnormal gait behaviors with strong accuracy and interpretability. By employing 

PCA for feature compression, the model retained 95.1% of the total data 

variance, simplifying the feature space while preserving biomechanical integrity. 

The subsequent use of Isolation Forest on PCA-derived reconstruction errors 

successfully isolated gait samples exhibiting significant deviations from the 

learned normal gait pattern. 

Quantitative evaluation revealed a ROC-AUC of 0.912 and an F1-score of 

0.866, confirming that the proposed method achieves a robust balance between 

detection sensitivity and reliability. The feature-level analysis identified stance 

phase duration, step length, and stride length as the most influential variables 

in distinguishing gait anomalies, aligning with established biomechanical 

theories that associate stance irregularities with impaired balance and motor 

control. These findings affirm the model’s ability to capture clinically relevant 

gait deviations and its potential as a data-driven diagnostic tool. 

Beyond its technical performance, the proposed framework offers practical 

advantages for real-world applications. Its unsupervised nature eliminates the 

dependence on labeled data, enabling continuous, real-time monitoring in 

clinical or wearable settings. The model’s lightweight computational design and 

high interpretability make it suitable for integration into rehabilitation systems, 

fall-risk monitoring platforms, and IoT-based mobility assessment devices. 

Consequently, this approach bridges the gap between traditional biomechanical 

analysis and modern machine learning techniques, providing a scalable solution 

for intelligent healthcare. 

For future research, several directions are proposed. Incorporating Deep 

Autoencoders or Variational Autoencoders could enhance the model’s ability to 

capture nonlinear relationships among gait features, improving sensitivity to 

subtle abnormalities. Additionally, expanding the dataset to include diverse 

subjects, environments, and sensor modalities would improve generalizability 

and clinical robustness. Further exploration of hybrid ensemble models 

combining multiple anomaly detection algorithms may also yield performance 

gains. Overall, the findings of this study establish a solid foundation for 

developing advanced, interpretable, and real-time gait anomaly detection 

systems that contribute to preventive healthcare and mobility analytics. 
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